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Global Conformal Parameterization via an
Implementation of Holomorphic Quadratic

Differentials

Hui Zhao, Shaodong Wang, and Wencheng Wang

Abstract—We propose an algorithm to compute global conformal parameterizations of high-genus meshes, which is based on an

implementation of holomorphic quadratic differentials. First, we design a novel diffusion method which is capable of computing a

pole-free discrete harmonic measured foliation. Second, we propose a definition for discrete holomorphic quadratic differential which

consists of a horizontal and a vertical harmonic measured foliation. Third, we present a practical algorithm to approximate the discrete

natural coordinates for a holomorphic quadratic differential, which represents a flat metric with cones conformal to the original metric,

i.e., a parameterization. Finally, we apply the discrete natural coordinates for parameterization of high genus meshes. Our

parameterization method is global conformal and simple to implement. The advantage of our method over the approach based on

holomorphic differential one-forms is that ours has a larger space of parameterizations. We demonstrate our approach with hundreds

of configurations on dozens of meshes to show its robustness on conformal parameterization.

Index Terms—foliation, parameterization, differential one-form, holomorphic quadratic differential, harmonic

✦

1 INTRODUCTION

M ESH parameterization is a challenging problem in ge-
ometry processing. There are already many powerful

algorithms for disk-type meshes [1]. However, for high-
genus ones, creating a global conformal parameterizations is
still hard to achieve. In this paper, we address this challenge
based on holomorphic quadratic differentials.

A flat metric with cones leads to a global parameteriza-
tion [2]. And if the flat metric is conformal, the map will
be conformal as well. For example, it is proposed to use
two independent harmonic one-forms on a mesh [3] or its
branched cover [4] for producing a flat metric, thus, a pa-
rameterization. Unfortunately, both the metric and the map
by such a method could be non-conformal. With regard to
this, using two conjugate harmonic one-forms (holomorphic
one-forms) in [5] can produce a flat metric conformal to the
original metric and conformal parameterization. However,
the flat metrics induced from holomorphic one-form has
only 2g−2 (g is the genus of the mesh) cones, each of which
has the angle deficit of −2π.

In this paper, we propose to use holomorphic quadratic
differentials [6] to obtain a flat metric conformal to the
original metric, thus, conformal parameterizations. As the
set of holomorphic quadratic differentials is a superset of
holomorphic differential one-forms, our flat metrics can be
generalized to have 4g−4 cones, each of which has the angle
deficit of −π. This provides a bigger solution space than
using holomorphic one-form for global parameterization. A
holomorphic quadratic differential induces two harmonic
measured foliations that are perpendicular to each other,
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called a horizontal harmonic measured foliation and a vertical
harmonic measured foliation, by which the u-coordinate and
the v-coordinate for parameterization can be extracted re-
spectively. Here, by definition, it is required that the har-
monic measured foliations are without poles. With regard
to this, we follow the Gortler-Thurston-Palmer’s algorithm
[7], [8] to obtain the horizontal foliation, and develop a
novel diffusion algorithm to avoid poles, which are emerged
with the Gortler-Thurston-Palmer’s algorithm, due to its
diffusion procedure. After that, we design a method to ap-
proximate the natural coordinates of holomorphic quadratic
differential.

Contributions. We summarize our contributions as follows:
1) We propose a novel geometric object called foliation
graph, and use it to design a three-step diffusion algorithm
to compute harmonic foliations without extra poles, which
could emerge in the algorithm [8]. 2) Given only a discrete
harmonic measured foliation, we propose an algorithm to
compute the discrete natural coordinate of the implied holo-
morphic quadratic differential. 3) We apply discrete natural
coordinates to produce global conformal parameterizations for
high-genus meshes.

1.1 Algorithm Overview

Based on the following derivations: 1) a harmonic measured
foliation induces a unique quadratic differential; 2) a holo-
morphic quadratic differential produces a special natural
coordinate; 3) this natural coordinate corresponds to a flat
metric conformal to the original metric; 4) a flat metric
breeds a plane parameterization; and 5) the holomorphic
maps are conformal everywhere; we design an algorithm to
compute global conformal parameterizations via the natural
coordinates of holomorphic quadratic differentials. The in-
put to our algorithm is a set of loops and the corresponding
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Fig. 1. The pole-free harmonic foliations (a, c, e) and holomorphic quadratic differentials (b, d, f) produced by our algorithm.

positive values on them. First, we compute a discrete pole-
free harmonic foliation, which is our u-coordinate, then
we calculate its counterpart v-coordinate via a dual mesh.
The outputs of our method are the uv-coordinates for all
vertices.

2 RELATED WORK

Surface parameterization is a very broad topic in geometry
processing. For disk-type meshes, parameterization algo-
rithms are well explored. We refer the readers to [9] for
an introduction. Here, we focus on the most relevant ones,
especially parameterizations for high-genus meshes.

Crane [1] summarizes a majority of conformal algo-
rithms for disk-type meshes as follows: 1) triangle angle
preservation in the least-squares sense [10], [11]; 2) the
Cauchy-Riemann equation preservation [12]; 3) critical points
of Dirichlet energy [13]; 4) Hodge star preservation [14];
5) conjugate harmonic functions [15]. Each of the above
approaches proposes a different and non-equivalent discrete
conformal structure. However, these structures only work
on disk-type meshes.

Injective algorithms are proposed in [16], [17], [18],
[19], [20], [21]. Nonetheless, these methods require cutting
meshes into disks as a pre-process and the mapping results
are not conformal. For some specific genus and configura-
tion of cones, orbifold approaches [22], [23] can be applied
to obtain injective mapping. But they are not available for
arbitrary genus.

Ricci flow [24] and Calabi flow [25] can work on uncut
meshes of high genus by evolving the original discrete
metric (edge length) to a flat metric conformal to the original
metric. However, these metric-flow based methods need an
extra embedding step to achieve the mapping, which could
produce numerically unstable results. Recently, Zhao et al.
[26] proposes a unit normal flow for mesh parameterization,
but their method cannot process high-genus meshes after
all.

The above approaches can be classified into two method-
ologies: 1) the first class takes the mapping coordinates
(u, v) as the unknown variables and computes them directly
and simultaneously; 2) the second class computes the edge
length as the first step and then the parameterization is
induced from that metric.

In contrast, the following algorithms fall into the third
methodology which computes the two coordinate variables
u and v indirectly by integrating a global differential one-
form.

Conformal parameterization from a global view is pio-
neered by Gu and Yau [5], who propose an algorithm to
compute the bases of the harmonic differential one-forms.
Then a conjugate counterpart of any harmonic one-form is
calculated via the bases. Tong et al. [27] present a variation
of Gu-Yau’s algorithm by diffusing a harmonic one-form
from a closed one-form. Gortler et al. [3] prove and analyze
the local injectivity of the mapping results from integrating
two independent harmonic one-forms by an index-counting
mechanism. This is further generalized to harmonic one-
forms on branched covers of high genus meshes in [4].
However, the method in [4] is not conformal and robust
on high-genus meshes.

A differential one-form is discretized in [5] as real values
on half-edges. Gortler and Thurston [7] defines a discrete
foliation as positive values on edges. Palmer [8] derives a
remarkable discrete Whitehead operation on foliations, which
tries to smooth the values on input loop edges to the whole
surfaces inside the same Whitehead class of foliations. Based
on the work of [28], a discrete Dirichlet energy is proposed
in [7], [8]. Then a diffusion method is applied in [8] to morph
a discrete closed foliation to a discrete harmonic foliation via
a sequence of Whitehead operations that decrease the energy.
However, this method could generate extra poles which
prevents its usage in holomorphic differentials. Based on
the theoretical work of [7], [8], we develop a novel method
in this paper to avoid pole emergence in [8] for producing
harmonic results.

Based on graph harmonic maps [29], Lei et al. [30],
[31] propose an algorithm to compute discrete holomor-
phic quadratic differentials, thus measured foliations. Their
method works by cutting a mesh into several cylinders, then
the differential one-forms computed on these cylinders are
gathered together to form a holomorphic quadratic differ-
ential. While this algorithm is theoretically solid, it changes
the connectivity of meshes by cutting them into cylinders
across triangle faces.

A discrete foliation method is proposed in [32] to achieve
bijective maps, however, it works only for simply-connected
surfaces and volumes. Cohen and Ben-Chen [33] design a
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flow based method to generate volumetric foliations, but
their approach is limited to star-like genus-zero surfaces.
While geodesic foliations are explored in [34] for fabrication,
their method is not oriented for parameterization.

3 MATHEMATICAL PRELIMINARY

For the sake of clarity and conciseness, here we only give an
outline and short explanation of the required mathematical
background to avoid distraction from our key algorithm.
We refer readers to [6], [30], [31], [35], [36], [37], [38], [39]
for a more solid and formal review of the definitions of
the involved concepts, especially [7], [8] for the discrete
harmonic measured foliation. Although the derivation is
somehow intriguing, our algorithm simply boils down to
manipulating values on edges. For readers who are primar-
ily interested in the implementation, this section could be
skipped.

3.1 Complex (Conformal) Structure

A 2-dimensional manifold is a topological space that is
locally regarded as R

2. It is represented by a collection
of charts {(Ui , φi)}

2
i=1 with overlapping regions. Here

φi : Ui → R
2 is a continuous bijective map from Ui to

an open set φi(Ui). On the overlap of two charts (Ui , φi)
and (Uj , φj), the transition function φij = φj ◦ φ−1

i :
φi(Ui ∩ Ui)→ φj(Uj ∩ Uj) describes a continuous bijective
transformation from φi(Ui) to φj(Uj ). The set of all local
charts {(Ui , φi)}

2
i=1 forms an atlas. The charts and their

transition functions determine the geometric structures. Dif-
ferent kinds of transition functions will produce different
geometric structures.

A complex function f : C → C : x + iy 7→ u(x, y) +
iv(x, y) is holomorphic, if it satisfies the following Cauchy-
Riemann equation ux = vy, uy = −vx. If f is invert-
ible and f−1 is also holomorphic, then f is called a bi-
holomorphic function. If all the transition functions of an atlas
{(Ui , φi)}

2
i=1 are bi-holomorphic, then the atlas is called a

complex atlas. The maximal complex atlas is called a complex
structure. A surface with a complex structure is called a Rie-
mann surface [39]. For Riemann surfaces, a complex structure
is also a conformal structure.

3.2 Differential One-Form

On a Riemann surface R with a complex atlas {(Uα, φα)},
a complex-valued differential one-form ω : TR → C maps
any tangent vector v ∈ TR and scalar λ ∈ C to a complex C

[8], so that:

ω(λv) = λω(v).

Locally, ω is defined by a family {(Uα, φα, ωα)}, such
that on each local chart with the local complex parameter
zα, there is ωα = ωα(zα)dzα. On the overlap Uα ∩ Uβ

of two charts, zα = φαβ(zβ) is coordinate transformation,
then coefficient function ωα changes according to the rule:
ωα(zα)

dzα
dzβ

= ωβ(zβ). If ωα(zα) is a holomorphic function

on every chart, ω is called as holomorphic differential one-form.
If ωα(p) = 0 at a point p on a surface R, the point p is called
a zero point of ω, which does not change with charts.

3.3 Quadratic Differential

Differential one-form ω maps any tangent vector to a value
linearly, yet quadratic differential Ω : TR → C quadratically
maps any tangent vector λv [8] as:

Ω(λv) = λ2Ω(v).

Quadratic differentials can be regarded as “locally the
square of differential one-form”. On a Riemann surface R
and a coordinate chart zα : Uα ⊂ R → C, a quadratic
differential Ω on the whole Riemann surface R, locally on
Uα, can be expressed as:

Ωα = Ωα(zα)dz
2
α,

here Ωα(zα) is a holomorphic function on every chart,
and the map Ω is called holomorphic quadratic differential.
The coefficient function Ωα(zα) changes accordingly be-
tween different coordinate charts by the following rules:

Ωα(zα)
dz2

α

dz2

β

= Ωβ(zβ).

Definition 3.1 (Zero [30]). A point p is called a zero of a
holomorphic quadratic differential if Ωα(p) = 0. The zeros
do not change with charts.

Definition 3.2 (Natural Coordinate [30]). On a simply-
connected patch Ui without zeros inside, a well-defined
holomorphic square root of Ω, or equivalently a holomor-
phic differential one-form, is:

√
Ω(p)dz. A holomorphic

function ζ : Ui → C can be computed by the path-
independent integration ζ(p) =

∫ p

p0

√
Ω(z)dz from any

point p to a fixed point p0. The function ζ is called a natural
coordinate on Ui.

The natural coordinate of a quadratic differential induces
a flat metric with cone angle deficit of −π at zeros. Under a
quadratic differential, on every point p of Riemann surface
R, a vector v ∈ TpR is called horizontal if Ω(v) is real and
positive. Away from zeros, the pullback of the positive real
axis by Ω is a line (instead of a vector). The curves, whose
tangent vectors are horizontal, are the horizontal trajectories
of Ω. The curves of the vertical (horizontal) trajectories have
constant real (imaginary) natural coordinates. The trajecto-
ries through the zeros are called the critical trajectories.

3.4 Measured Foliation

Foliation [40] looks like stripe patterns on a surface (Fig. 1).
A leaf is just a smooth line on surfaces. A measure µ can
be assigned to a foliation F and it denotes the number of
leaves that a transverse arc γ crosses. A measured foliation
|dv| or ((F , µ)) [35] is defined by the real valued functions
vi defined on Ui under a set of conditions.

Definition 3.3 (Whitehead Move [40]). A Whitehead move
is a morph of one foliation to another, consisting of three
cases: 1) isotopic; 2) collapsing a finite arc between two
zeros; 3) splitting a zero.

Definition 3.4 (Whitehead Class [40]). Two measured folia-
tions (F , µ) and (G, ν) are Whitehead equivalent if they can
be transformed to each other by some Whitehead moves.
All foliations are grouped into Whitehead classes by this
equivalent relationship.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHITCS 4

A holomorphic quadratic differential Ω derives a unique
measured foliation within a Whitehead class FΩ (equiva-
lently, a unique Whitehead class) and vice versa.

3.5 Dirichlet Energy and Harmonic Measured Foliation

By harmonic analysis [41], a harmonic differential one-form
minimizes the Dirichlet energy in its cohomology class. Sim-
ilarly, according to [28], there is a kind of Dirichlet energy
D for a measured foliation |dv|, and a harmonic foliation
uniquely minimizes the Dirichlet energy in its Whitehead
class [28], [42].

There are some facts about measured foliations, holo-
morphic differential one-forms and holomorphic quadratic
differentials for a genus g closed Riemann surface. 1) The di-
mension of the space of all harmonic one-forms is 2g. 1) The
complex dimension of the space of all holomorphic 1-forms
is g. 2) A holomorphic quadratic differential on a genus-
zero closed surface must be zero. 3) The complex dimension
of the space of all holomorphic quadratic differentials is
3g − 3, for the genus g > 1. 4) A holomorphic quadratic
differential has 4g − 4 zeros counting multiplicities. 5) The
local structures around a zero point of order one are the
complex functions: z → z2 for holomorphic differential one-

forms and z → z
3

2 for holomorphic quadratic differentials
respectively.

4 DISCRETE HARMONIC MEASURED FOLIATION

In this section, we discuss Gortler-Thurston-Palmer’s algo-
rithm and analyze its emergence of extra poles. Then we
introduce a novel graph structure on a mesh, called foliation
graph, and use it to design our pole-free algorithm.

4.1 Notations

Let V,E,H,T denote the vertices, edges, half-edges, and
triangles of a manifold triangle mesh. A smooth Riemann
surface M is discretized as M = (V,E,T). An edge from
vertex vi to vertex vj is specified as eij ∈ E; likewise,
tijk ∈ T denotes a triangle. The value of a function η on
a vertex vi, a edge eij and a triangle face tijk is expressed as

ηi, ηij , ηijk. The corner i of a triangle tijk is denoted by t
jk
i

with a subscript i and a superscript jk. While the value on a

corner is denoted by the same format, for instance, θjki ∈ R

denotes the angle at the corner tjki .

4.2 Gortler-Thurston-Palmer’s Algorithm

In this subsection, we give a brief summary of the relevant
concepts and the algorithm established in [7], [8], which
paves the way for our approach.

A discrete measured foliation is defined as F : E → R≥0

in [8] . If on every triangle tijk ∈ T, the foliation value
on one edge equals to the sum of the other two edges
Fij = Fjk + Fki, then the foliation F is called closed [7],

[8]. And the corner t
ij
k is called a closed corner and marked

with symbol ©, meanwhile the other two corners t
kj
i and

t
ik
j are marked with symbol × [7], [8] (Fig. 2). The ©s

separate the neighboring edges of a vertex into different
sectors {S1, S2, . . . , Sn} (Fig. 2) [8]. Let Sv denote all edges

abutting on the vertex v, a discrete measured foliation F is
coclosed [8] if for each sector Sk at v, there is [8]:

∑

eij∈Sk

αijFij ≤
1

2

∑

eij∈Sv

αijFij , (1)

here αij =
cot θij+cot θji

2
is the well-known cotangent

weight. Palmer [8] defines a closed and coclosed foliation as
a discrete harmonic foliation [7]. The positive value per edge
measures how many leaves traverse the edge.
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Fig. 2. Vertices and triangles of varying indices: the number after the
colon represents the index; the edges in the same color belong to one
sector. Note that the original concepts are introduced and shown in [8],
while here we only provide a detailed illustration.

Let the numbers of © and × corners surrounding a
vertex v ∈ V be O(v), X(v) and the numbers inside a
triangle t ∈ T be O(t), X(t) respectively [7], [8]; let Z(v)
and Z(t) be the number of edges whose discrete foliation
value is 0 around vertex v and triangle t [7], [8]. The
index of a vertex and a triangle are defined in [7], [8] as
iF (v) = 2 − O(v) + Z(v) and iF (t) = 2 − X(t) − Z(t).
Palmer [8] defines (Fig. 2): ”For a vertex v, 1) it is regular, if
iF (v) = 0; 2) it is a zero of order d, if iF (v) = −d; 3) it is a
pole of order d, if iF (v) = +d. For a triangle t; 4) it is regular,
if iF (t) = 0; 5) it is a zero of order 1, if foliation values on the
three edges are all 0 or satisfy the strict triangle inequality
condition; 6) it is a pole, if the discrete foliation value on one
edge is bigger than the sum of the discrete foliation values
on the other two edges.”

Palmer [8] presents a remarkable Whitehead class-
preserving discrete Whitehead move to evolve a foliation F
to another WkF . This operation changes the values of one
ring of neighboring edges of a vertex by dividing all the
edges into several sectors, then adding one optimal value to
each edge of some sectors and subtracting the same value
from other sectors [8].

Given a set of disjoint, nontrivial triangle loops
{L1, L2, . . . , Lk} and the positive values {w1, w2, . . . , wk}
on these loops, Gortler and Thurston [7] propose to create
an initial closed foliation F(0) by assigning Fij(0) = wi to
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the shared edges {eij} of the loop Li, and 0 to all other
edges of a mesh. Then outlined in [7] and detailed in [8], a
simple diffusion procedure is proposed to evolve the closed
foliation F(0) to a harmonic foliation F(h) by a sequence of
optimal discrete Whitehead moves that can decrease Dirichlet
energy

∑
eij∈E

αijF
2
ij [8, Chapter 4.2]. The diffusion of their

algorithm is illustrated in Fig. 3

(a) (b) (c)

Fig. 3. The diffusion of Gortler-Thurston-Palmer’s algorithm [7], [8]: (a)
an input loop generating an initial closed foliation; (b) the closed, but not
yet harmonic foliation (blue points are to be visited); (c) the convergent,
but non-harmonic foliation with an extra pole (red) and zero (blue).

4.3 Extra Poles by Gortler-Thurston-Palmer’s Algo-

rithm

Generally speaking, all leaves of the initial foliation pass
through the input triangle loops, and the optimization pro-
cess should diffuse them onto the whole surface as smooth
as possible, i.e., being coclosed. Meanwhile a harmonic folia-
tion should not have any pole. However, the basic diffusion
scheme in [8] could create extra poles (Fig. 3, 12, 31) and
extra zeros. This will cause the optimization to be trapped
in a local minimum. The reason is that their method does
not control the diffusion procedure and the topological disk
patch with its index sum bigger than 0 could emerge in
their diffusion [8]. As illustrated in Fig. 4, the index sum
of a topological disk patch is not 0, so that the patch will
produce a zero or a pole (Fig. 4). This means that the order of
traversal in diffusion does matter.

Fig. 4. Three topological disk patches with different index sums (top row)
and the corresponding converged results (bottom row). The colors for
singularities (both faces and vertices) of different indices are shown in
the legend, which is used throughout this paper.

4.4 Foliation Graph

For a set of input loops on a mesh, we propose a novel
geometric object called foliation graph. Different input loops
will create different foliation graphs (Fig. 5).

Fig. 5. The input loops (orange) and the corresponding foliation graphs
(blue).

A foliation graph has two kinds of components (Fig.
6): strips of one-triangle width and junctions. The junctions
have two variants: vertex junction or triangle junction, accord-
ing to their connected stripes intersected at a vertex or a
triangle. (Fig. 10). A strip connects two junctions (or self
connecting) by intersecting at a vertex or a triangle.

Fig. 6. The graph structure of a foliation graph: vertex junction (left green
arrow), triangle junction (right blue arrow) and a strip (dotted lines in the
middle) on the mesh.

The foliation graph is homotopic to the input loop on a
mesh of genus one and homotopic to the critical trajectories
of a foliation on high genus meshes (Fig. 5). The foliation
graphs produced by homotopic input loops are homotopic
as well regardless of initial weights (Fig. 7). On the other
hand, homotopically nonequivalent loops will produce dif-
ferent foliation graphs (Fig. 8).

Fig. 7. The foliation graphs (blue) produced from the same input loops
(orange) with different weights on a mesh are different but homotopic to
each other.

The algorithm of our foliation graph generation is a vari-
ation of the breadth-first traversal. We start from the vertices
in the input loops, then diffuse the edge values around them
by discrete Whitehead moves to other triangles’ edges. In our
diffusion, we try to keep some triangles untouched to avoid
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Fig. 8. The foliation graphs (blue) produced from different input loops
(orange) on a mesh are different to each other.

unvisited triangles forming a topological disk. Initially, all
vertices are poles. Then a Whitehead move always changes
a pole vertex into a regular one [8], but the index types
of its neighboring vertices remain unchanged. However, in
one special situation, the neighbors may have their types
changed to regular vertices too. We call this special Whitehead
move as a critical move.

Definition 4.1 (Critical Move). A Whitehead move is called
a critical move if it turns any neighboring vertex from a pole
to a regular vertex.

A critical move will cut open the strip of a foliation graph
and change its topology, as shown in Fig. 9.

(a) Noncritical move.

(b) Critical move.

Fig. 9. (a) A noncritical Whitehead move will turn the central vertex
from pole to regular and keep the index type of neighboring vertices
unchanged. (b) A critical move on the central vertex will remove three
pole vertices and zero faces simultaneously, and cut open the foliation
graph.

Definition 4.2 (Foliation Graph). The vertices and faces
form a foliation graph if any Whitehead move on them is a
critical move.

The whole process is detailed in Algorithm 1, where we
use a maximum heap to accelerate the diffusion process.
Note that our proposed foliation graph is not the same as
the well-known cut graph of a surface.

(a) a strip (b) triangle junction (c) vertex junction

Fig. 10. Whitehead moves inside a foliation graph could lead unvisited
elements to form three patterns. The index sums of (a), (b) and (c) are
0, -1 and -1 respectively. None of them could produce poles.

If we perform a critical move inside a foliation graph,
it will start to break into three kinds of topological disk

Algorithm 1 Foliation Graph Generation

Input: An initial closed foliation F(0) on a mesh M.
Output: A Whitehead-equivalent foliation where unvisited

faces form a foliation graph.
1: Build max heap H of vertices with energy’ gradients as

keys
2: while not all unvisited vertices are marked non-

movable do
3: v ← H.pop()
4: attempt←WhiteheadMove(v)
5: if attempt is not critical move then
6: Perform WhiteheadMove(v)
7: H .update(v, energy’ gradient(v))
8: for vi ∈ one-ring neighbor of v do
9: H .update(vi, energy’ gradient(vi))

10: Unmark vi
11: end for
12: else
13: Do not perform WhiteheadMove(v)
14: H .update(v, 0)
15: Mark v as non-movable
16: end if
17: end while

(*Discrete Whitehead move and energy’s gradient follows [8,
Chapter 4.2])

patches (Fig. 10). Fortunately, no poles are created in each
kind of them, as proved in the following.

Lemma 4.1. The diffusion of the Whitehead moves inside a
foliation graph is pole-free.

Proof. 1) A critical move will break up the strip of a foliation
graph, where three pole vertices and zero faces will cancel
each other out, as mentioned in Fig. 9. If we continue to
move the tip of the strip, a zero face and pole vertex will
evolve into regular elements simultaneously, so no poles or
zeros are created either.

2) When a strip is disconnected from the foliation graph,
as illustrated in Fig. 10(a), there are N faces and N + 2
vertices on a triangle strip and both tip vertices on the strip
are regular, thus, the index sum of this patch is guaranteed
to be zero. In this case, no zeros or poles could show up.

3) Moreover, if a junction emerges in a traversal, its index
sum are negative since there are N zero faces and less than
N pole vertices inside them. For a triangle junction (Fig.
10(b)), any Whitehead move will turn (b) into one or several
(a)s depending on which vertex is moved. For a vertex
junction (Fig. 10(c)), this patch will degenerate to (a) or (b)
after Whitehead moves. In either case, no poles are created
and eventually, only 4g − 4 zeros are left when all elements
are visited by the diffusion process.

Practically speaking, the intersection of junctions could
become more complicated (Fig. 5) due to various combina-
tion of (b)s and (c)s. However, they will all degenerate to the
cases described above so that we conclude that the traversal
of a foliation graph is pole-free.
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4.5 Our Three-Step Diffusion Algorithm

We present a three-step diffusion algorithm (Alg. 2) for
generating harmonic foliation without poles. 1) We diffuse
the initial foliation to the rest of the surface by minimizing
the Dirichlet energy as the same as in [8]. However, our
traversal is constrained to avoid producing topological disk
unvisited patches such as those in Fig. 4. In the end, the
traversal of the first step will produce a foliation graph.
2) We start the diffusion inside the foliation graph. Given
the special structure of the foliation graph, no extra poles
could be generated in this step, as shown in the previous
subsection. 3) Finally, we diffuse the yet-to-be harmonic
foliation freely until the energy converges.

Algorithm 2 Three-Step Convergent Harmonic Foliation

Input: An initial closed foliation F(0) on a mesh M.
Output: A Whitehead-equivalent harmonic foliation.

1: Perform Alg.1 and get a foliation graph
2: Perform Whitehead moves on the vertices in the foliation

graph
3: Perform Whitehead moves until the Dirichlet energy con-

verges.

The key ideas in our solution are: 1) in the first step,
there is no unvisited topological disk patch in diffusion; 2)
the index sum of every unvisited topological disk patch in
the second step is non-positive.

During the first step of our method, the 4g − 4 zeros
remain inside the foliation graph, and no poles or zeros
are created among the visited mesh elements outside of the
foliation graph. After finishing the traversal of the first step,
all vertices and triangles outside of a foliation graph are
visited.

In the second step, we have argued in the Lemma 4.1
that no extra poles or zeros will emerge and there will only
be 4g − 4 zeros in the foliation.

In the third step, we optimize the foliation on the whole
mesh without any constraint. This step only decreases the
Dirichlet energy to make foliation smoother and does not
create new poles or zeros. In this step, the position of a zero
might change depending on the energy, and it could move
between face and vertex following a Whitehead move.

(a) (b) (c) (d)

Fig. 11. The workflow of our three-step method: (a) an input loop identi-
cal to Fig. 3; (b) minimizing the Dirichlet energy in a constrained manner
in the first step; (c) a foliation-graph is formed after the completion of first
step; (d) the final harmonic foliation without poles.

Our method is guaranteed to produce harmonic folia-
tions, while the naive traversal [8] fails in a lot of configura-
tions. We show the workflow of our algorithm in Fig 11 and

compared our algorithm against the method in [8] in Fig
12. More experimental results can be found in Fig. 31. Our
diffusion scheme is crucial to the construction of discrete
holomorphic quadratic differentials, thus conformal param-
eterizations. As a harmonic measured foliation determines a
holomorphic quadratic differential uniquely, if a foliation
is not harmonic, its corresponding holomorphic quadratic
differential cannot be computed.

5 DISCRETIZATION OF HOLOMORPHIC

QUADRATIC DIFFERENTIAL

5.1 Definitions

A differential one-form is discretized as real values on half-
edges in [3], [5], [37]. Holomorphic differential one-form is
discretized as complex values on half-edges in [5]. Measured
foliation and quadratic differential are both discretized as
positive real values on edges (not half-edges) in [7], [8].

Following the line of the above approaches, we pro-
pose to discretize a quadratic differential as complex values
on edges of a mesh. Unlike the discretization proposed
by Gortler and Thurston [7], who use discrete harmonic
measured foliation directly as discrete quadratic differential
(as theoretically they induce each other), we propose to
use a pair of discrete harmonic measured foliations as the
discretization of a quadratic differential. This subtle but
crucial difference makes our discretization applicable to
practical applications.

A quadratic differential induces a horizontal harmonic
measured foliation and a vertical harmonic measured fo-
liation [6]. A horizontal measured foliation uniquely de-
termines a quadratic differential as well [35]. Hence, a
horizontal measured foliation can produce a unique vertical
measured foliation. Roughly speaking, the vertical foliation
is a horizontal foliation rotated by 90 degree. After comput-
ing a discrete horizontal harmonic measured foliation by
our three-step diffusion method, we design an algorithm to
approximate its vertical counterpart indirectly via its natural
coordinate.

Definition 5.1 (Discrete Holomorphic Quadratic Differen-
tial). Let F represents a discrete horizontal harmonic mea-
sured foliation on a triangulated mesh M, and Fc represents
its vertical counterpart, a discrete quadratic differential Q is
defined as a pair of Q(F ,Fc) on the primal mesh M . On
every edge e, it is a complex value Qe(Fe + iFc

e ).

Definition 5.2 (Foliation Cut-Graph). A mesh M of genus
g can be cut into a disk patch by a basic cut-graph Gb with
the basis of 2g homotopy loops γh [43]. We extend Gb to a
larger cut-graph G by linking all zero vertices of a foliation
F to the basic cut-graph (Fig. 13). We call G as the foliation
cut-graph of F , which cuts M into a disk mesh M

c.

Note that foliation cut-graph is not the same as the
foliation graph proposed in Sec. 4.4.

Originally, foliation values are defined on the uncut
mesh. Then, we transfer them onto the cut mesh and call
it the twin foliation.

Definition 5.3 (Twin Foliation on M
c ). A twin foliation F ′

on M
c is generated fromF by replicating the foliation values

Fe on edges e of the cut-graph G onto the twin edges e1, e2
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(a) (c1) (d1) (e1) (f1) (g1) (h1) (i1)

(b) (c2) (d2) (e2) (f2) (g2) (h2) (i2)

Fig. 12. The diffusion in [8] compared to our algorithm. (a) Both methods use the same input. (b) Initially, the foliation is contained within the
loops while all other edges are zero-valued. However, (c1) - (i1) by [8] creates extra poles (red points) and zeros (blue points). Our algorithm avoid
forming topological disks of unvisited patches in the first step (c2) - (e2). The foliation graph is formed when the first stage ends in (f2). The diffusion
inside the foliation graph on the second stage eliminates the unvisited elements (g2). A pole-free harmonic foliation is generated when the energy
converges (h2) - (i2).

Fig. 13. Red lines connect zeros to the basic cut graph (gray lines) to
form the foliation cut-graph. Natural coordinates are defined on the disk-
type mesh cut by this foliation cut-graph.

of Mc. Accordingly the twin foliation Fc′ on M
c is generated

from Fc.

5.2 Discrete Natural Coordinate

Definition 5.4 (Discrete Natural Coordinate). Given a dis-
crete holomorphic differential Q(F ,Fc) on mesh M, for
any disk mesh M

c with zeros on its boundary, the complex
function (u+i v) is called the discrete natural coordinate of the
discrete holomorphic quadratic differential on M

c.

We propose to use the discrete natural coordinate as the
parameterization coordinates. Natural coordinates corre-
sponds to a flat metric with cones conformal to the orig-
inal metric (du, dv) with cones at zeros [6], therefore our
parameterization is conformal. Foliation F in our method is
computed before the foliation cut-graph, and the parame-
terizations is the same up to translation.

5.3 Computation of the u-Coordinate

While a quadratic differential is not integrable on a closed
surface, it can be turned into an integrable differential one-

form on a disk patch [6], [35]. Similarly, a closed discrete
measured foliation F on M can also be turned into an
integrable discrete differential one-form du : H → R on
M

c by assigning duh1 = +F ′
e, duh2 = −F ′

e to the two half-
edges h1, h2 of an edge e [8]. A function u : V → R on the
vertices of Mc can be computed by integrating du [8].

Note that around a zero vertex of odd order, there is no
consistent signs [8] (one positive, one negative) for each pair
of twin half-edges (Fig. 14). Thus, the foliation cut-graph
must pass through zeros.

(a) (b) (c)

Fig. 14. The signs around (a) a regular vertex; (b) a zero vertex of odd
order; (c) a zero vertex of even order. In the second case, the signs of
half-edges couldn’t be resolved consistently [8].

The zeros of the vertical foliation should be also located
at the same vertices as the zeros of the horizontal foliation, as
they belong to the same holomorphic quadratic differential.
Thus we fix the identical zeros, and then compute the v-
coordinate, as discussed in the following subsections.

5.4 Identical Zeros

On smooth surfaces, normally, the zeros of different har-
monic foliations are located on different positions. However,
a harmonic foliation and its conjugate come from the same



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHITCS 9

holomorphic quadratic differential, so their zeros should
have identical positions.

The discrete zeros of a discrete harmonic foliation F
could be on a triangle (Fig. 2h ) or a vertex (Fig. 2d). If a zero
falls on a triangle, the triangle can be divided into three sub-
triangles [8], such that the zero appears on the newly added
vertex inside the triangle and each sub-triangle is regular [8],
as shown in Fig. 15a. As a result, we could convert all zeros
on M to vertices.

Since a zero vertex of F on M corresponds to a zero dual

face of F̃c on the dual mesh M̃, we propose a method to

subdivide the dual faces and F̃c, such that the zeros of F̃c

fall exactly onto the same primal vertices as the zeros of F . A
zero primal vertex of index −1 has three sectors {S1, S2, S3}
(Fig. 2). Then the edges on the dual face can also be divided

into {S̃1, S̃2, S̃3} sectors. Denote the sums of foliation values

in these sectors as {F̃c(S̃1), F̃
c(S̃2), F̃

c(S̃3)}. Based on Eqn.
1, they satisfy the following coclosed condition.

F̃c(S̃1) < F̃
c(S̃2) + F̃

c(S̃3),

F̃c(S̃2) < F̃
c(S̃1) + F̃

c(S̃3),

F̃c(S̃3) < F̃
c(S̃1) + F̃

c(S̃2).

For a dual face, we add three edges ẽ1, ẽ2, ẽ3 by linking
the dual vertices with © markers to the primal vertex.
This operation divides the dual face into three sub-faces, as
shown in Fig. 15b. The foliation values on three new edges
are computed as follows:

F̃c
ẽ1

=
1

2
(F̃c(S̃1) + F̃

c(S̃2)− F̃
c(S̃3));

F̃c
ẽ1

=
1

2
(F̃c(S̃1) + F̃

c(S̃3)− F̃
c(S̃2));

F̃c
ẽ1

=
1

2
(F̃c(S̃3) + F̃

c(S̃2)− F̃
c(S̃1)).

Then all these three sub-faces are regular, and the zero of

F̃c falls on the primal vertex.

i

j k

c

i

j

k

l

m

n

c

(a) (b)

Fig. 15. Both the primal zero face (a) and the dual zero face (b) could be
subdivided so that the central vertex becomes a zero vertex. Note that
the subdivision in (a) is introduced in [8].

5.5 Approximation of the v-Coordinate

Similarly, we’d like to convert the vertical foliation into
integrable one-forms so that we could compute the v-
coordinate. Note however the vertical harmonic foliation
F̃c implied in [7] lives on the dual mesh M̃. Instead, our
Fc is on the primal mesh M. Although the function u can
be computed from F directly as discussed in subsection
5.3, unfortunately, Fc is unknown. Thus, we propose an
approach to approximate the v-coordinate on the primal

mesh via F̃c.

We apply the discrete Hodge star operator [37] to compute

F̃c, i.e., F̃c

ĩj
= αij ·Fij on the dual edge ẽij [7]. A©marker

of F corresponds to a × marker of F̃c, and vice versa (Fig.
16) [7].

(a) primal face - dual vertex (b) primal vertex - dual face

Fig. 16. The measured foliation F̃c on the dual mesh [7], where the
edges are grouped into sectors marked in different colors. (a) A closed
primal face becomes a coclosed dual vertex. (b) A coclosed primal
vertex becomes a closed dual face.

A regular vertex on a primal mesh has two sectors S1, S2

separated by two © marker [8]. On the other hand, the

foliation values of F̃c on the regular dual faces can be

divided into two groups S̃1, S̃2 as well, and the sums of
foliation values are equal according to the coclosed condition.
This serves as the closed condition on the dual mesh (Fig. 16).
Similarly, a regular primal triangle leads to a regular dual
vertex. The regular dual vertex has two © marker and one
× marker, who divides the three incident edges into two
sectors that satisfy the coclosed condition (Fig. 16a).

Similarly, the dual mesh M̃ can also be cut into a disk-

topology mesh M̃
c with a cut-graph G̃. The foliation F̃c′ and

an exact differential one-form dṽ : Ṽ → R on M̃
c can also

be obtained from F̃c. Integrating dṽ, we can get a function

ṽ : Ṽ→ R on the vertices of M̃c, such that,

F̃
′c
ij = |ṽi − ṽj |.

Finally the function v : V → R on M
c is computed from

ṽ. The value vi is computed by averaging the values ṽj on
the dual vertices of the corresponding dual face.

vi =
1

n

n∑

j=1

ṽj (2)

5.5.1 Extended Mesh

Note that the value v from Eqn. 2 should respect the cut
graph G used by the horizontal integration. However, half
of the neighboring triangles for a boundary vertex on the
cut-graph are cut off. We introduce the extended mesh to solve
this problem. An extended mesh M

ce (Fig. 18) extends the cut
mesh M

c along its boundary with neighboring triangles on
the other side of the cut-graph in the uncut mesh M. The
whole algorithm is listed in Alg. 3 and the whole work-flow
is summarized as follows:

F =⇒ F̃c =⇒ F̃c′ =⇒ dṽ =⇒ ṽ =⇒ v

5.6 Admissible Curve System

On a surface of genus g , a set of non-intersecting, disjoint,
pairwise not homotopic, homotopically nontrivial simple
loops Γ = {γ1, . . . , γn} (n ≤ 3g − 3) is called an admissible
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Fig. 17. A gallery of global conformal parameterizations produced by our method. The shapes of the texture circles are well preserved, exhibiting
the conformality of our method.

(a) (b) (c)

Fig. 18. We extend the mesh for dual integration: (a) cut the mesh
along the cut graph; (b) extend the mesh beyond the borders; (c) border
vertices become interior vertices so dual integration works in the same
way for all vertices.

Algorithm 3 Approximation of the v-coordinate

Input: Mesh M, Foliation F , Cut graph G
Output: the v-coordinate

1: Cut M into the disk mesh M
c using G

2: for all V c
i on the border of Mc do

3: Vi ← identical to V c
i on the original mesh

4: Add 1-ring face of Vi to V c
i if its counterpart is not in

M
c

5: end for
6: Build the dual mesh M̃

ce on the extended mesh M
ce

7: Compute Hodge dual F̃c and convert it to 1-forms on

M̃
ce

8: vc ← integrate 1-forms on M̃
ce

9: for all V c
i in M

c do
10: Compute vi from vci according to Eqn. 2
11: end for

curve system [44, Chapter 11], as shown in Fig. 19. Two

admissible curve systems Γ and Γ̃ with the same number
of loops are called compatible, if each γi is homotopic to γ̃i.

(a) 3g − 3 = 3 (b) 3g − 3 = 6

Fig. 19. Two admissible curve systems of non-intersecting simple loops
for a mesh of genus 2 and 3 respectively.

Theorem 5.1 ( [6]). The maximal number n of loops in an
admissible curve system on a compact Riemann surface of genus
is n = 3g − 3 for g > 1; n = 0 for g = 0, n = 0; and n = 1 for
g = 1.

Theorem 5.2 ( [30], [35]). Given a set of admissible simple
loops Γ = {γ1, . . . , γn}, and n ≤ 3g − 3 and positive num-
bers {w1, . . . , wn}, there exists a unique holomorphic quadratic
differential such that it has these weights as foliation values along
these loops.

These two theorems complete the story of our approach.
The input to our algorithm is an admissible curve system,
and the initial foliation values assigned on them corre-
spond to {w1, . . . , wn} in theorem 5.2. The number of ad-
missible curve systems is infinite, and every holomorphic
quadratic differential (and a harmonic measured foliation)
can be achieved from a certain admissible curve system.
The compatible admissible curve systems induce the same
holomorphic quadratic differential.

5.7 The Workflow

The cotangent weights must be positive [7]. Thus, our
parameterization method requires an intrinsically Delaunay
triangulation, which can be achieved by performing edge
flips on any triangle mesh [45]. The intrinsic Delaunay
triangulation has the same conformal structure (i.e., holo-
morphic quadratic differentials) with the original mesh (as
discussed in [1, Sec. 1.5.2]). An admissible triangle loop is a
cycle of triangles sharing one edge with its neighbors. Three
automatic methods could be used to create edge loops: 1)
the greedy homotopy basis method [43]; 2) the handle and
tunnel algorithms in [46]; 3) 3g−3 loops [30]. After that, the
triangle loops are generated from these edge loops directly. We
list all the steps in Algorithm 4.

6 EXPERIMENTS AND DEMONSTRATIONS

The only required input to our parameterization is an ad-
missible curve system which can be produced automatically
and robustly. Our method is also insensitive to the exact
locations of admissible curve systems as well as mesh tri-
angulation and resolution. The whole system is automatic.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHITCS 11

Algorithm 4 Global conformal parameterization

Input: A high-genus Delaunay triangle mesh M, Admissi-
ble input loops L

Output: A conformal, and cut-free parameterization (u, v)
1: Compute harmonic horizontal foliation F using Alg. 2
2: Build cut-graph G for M
3: Cut M along G to get the topological disk mesh M

c

4: Integrate F on G
c to get the u-coordinate

5: Use Alg. 3 to compute the v-coordinate

Below we demonstrate our algorithm in terms of these
aspects and compare it with previous methods. Please refer
to the supplementary videos for a more vivid illustration.

6.1 Conformal Mapping

Built on a solid theoretical ground, our parameterization
method can produce conformal results, as shown in the
gallery in Fig. 17. The conformality could be seen from the
preserved circles on the surfaces.

6.2 The Number of Input Loops

According to theorem 5.1, we can have at most 3g − 3
loops in an admissible curve system. The foliations and
parameterizations generated by different numbers of loops
in our algorithm are exhibited in Fig. 20.

Fig. 20. 1 to 6 (3g − 3) input loops. The top row shows the horizontal
foliation and the bottom row shows the conformal parameterization.

6.3 Using All Handle and Tunnel Loops

In practice, we do not need to choose the input loops man-
ually. We can use all handle loops or tunnel loops automat-
ically generated by [46] for nice quality parameterizations,
as shown in Fig. 21

6.4 Discussion on Conjugacy

A straightforward attempt is trying to use a handle loop [46]
for the horizontal foliation, and its corresponding tunnel
loop for the vertical foliation. However, these two foliations
cannot induce a holomorphic quadratic differential, i.e., a
conformal parameterization, as demonstrated in Fig. 22.

Fig. 21. The foliations and parameterizations computed from g handle
(1st, 2nd row) and tunnel (3rd, 4th row) loops of each mesh.

(a) combined (b) handle loops (c) parameterization

(d) combined (e) tunnel loops (f) parameterization

Fig. 22. The foliations are generated with all handles (b) and all tunnels
(e) respectively. Their corresponding conformal parameterizations by
our algorithm are exhibited in (c) and (f). However, the combination of
(b) and (e) will not produce a conformal parameterization, as shown by
distorted ellipses and rectangles in (a) and (d).

6.5 Homotopic Loops Convergence

Compatible admissible curve systems (i.e., homotopic
loops) generate the same harmonic measured foliation [8]
and holomorphic quadratic differentials, i.e., discrete natural
coordinates. Therefore our parameterization result is robust
against large variations of input loops as long as they remain
homotopic, as exhibited in Fig. 23.

Our method can easily produce different parameteriza-
tions by homotopically different input loops, as shown in
Fig. 24.
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Fig. 23. The harmonic foliations (middle) and conformal parameteriza-
tions (right) are the same from different foliation graphs produced by
homotopic loops (left).

Fig. 24. Different foliations (1st, 3rd row) and parameterizations (2nd,
4th row) controlled by input loops.

6.6 Triangulation and Resolution Robustness

Our conformal results are insensitive to triangulations and
resolutions, as shown in Fig. 25. This probably benefits from
the used cotangent weight, which can capture the conformal
structures of the meshes.

(a) (b) (c) (d)

Fig. 25. The positions of zeros in different configurations and grid lines
are almost in the same places of the horse shape for the meshes of
different resolutions ((a),(b): 3000 vertices; (c),(d): 27000 vertices).

6.7 Closed and Harmonic Foliations

A harmonic foliation is the smoothest one in its Whitehead
class [28]. Fig. 26 shows some closed, but not yet harmonic
foliations and their harmonic counterpart. The detailed diffu-
sion procedures are illustrated in the supplementary video.

Fig. 26. A closed foliation gradually evolves into a harmonic one with our
algorithm.

6.8 Comparison with Gortler-Thurston-Palmer’s Algo-

rithm

We compare our three-step method with Gortler-Thurston-
Palmer’s algorithm on dozens of commonly known meshes
of high genus in the graphics community. Their method
fails in plenty of cases, while ours can produce harmonic
measured foliations successfully. Some results are exhibited
in Fig. 31.

6.9 Comparison with holomorphic 1-forms

The most closely related parameterization algorithm to
ours is built on discrete holomorphic differential one-forms
[5]. Holomorphic quadratic differentials (of dim 3g − 3)
generalize holomorphic differential one-forms (of dim g).
Thus, our method can produce a larger space of conformal
parameterizations for the same mesh of genus g. Specifically,
the zeros of a harmonic one-form have index of −2 (Fig. 28
a1, b1, c1, d1), and −1 for foliations (Fig. 28 e, f). A close-
up view of the zeros is exhibit in Fig. 27. The number of
zeros in the example are 2g− 2 (holomorphic one-form) and
4g − 4 (holomorphic quadratic differentials) respectively.
Therefore, the conformal parameterization of our method
have less distortion, as shown in Fig. 29 and Fig. 32.

(a) (b) (c) (d)

Fig. 27. Zero of index -2 produced by harmonic 1-forms (a), (b); zero of
index -1 produced by harmonic foliation (c), (d).

As harmonic one-forms are just special harmonic folia-
tions, our method can also produce harmonic one-forms by
specific input loops, as shown in Fig. 28(a3, b3). By carefully
choosing the initial values for the loops, two index -1 zeros
could merge into a single index -2 zero.

The approach in [5], [27] also starts from a closed, but
not harmonic one-form according to a single input loop,
then they use a linear system to compute the harmonic one.
Note that using the same input loop in [5], [27] and ours
are not supposed to generate the same results (the second
row of Fig. 28), as these two algorithms are fundamentally
different.

6.10 Convergence

In the experiments, we use an epsilon to stop the optimiza-
tion procedure. If the change of the energy is less than
the epsilon value, we obtain a harmonic foliation from an
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (e) (f)

Fig. 28. [5] produces 2g harmonic 1-forms basis (1st row) on a mesh of
genus g. Our algorithm (2nd row) uses the same input loops as for the
1st row, but (a2,b2) generate different results from (a1,b1), meanwhile
(c2,d2) generate the same results as (c1,d1). (a3,b3) show that, with
specified loops and initial values, our method can produce the same
results with (a1,b1). Our algorithm could also produce results with zeros
of cone angle deficit of −π, which one-forms fail to achieve (e,f).

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (e) (f)

Fig. 29. Parameterizations corresponding to Fig. 28.

input closed foliation. The convergence time grows with the
increased resolution of the mesh. Meanwhile, the computa-
tional time could also vary a lot according to the shape of
the mesh as well as the input loops, even when the meshes
have the same number of vertices. In our experiments, the
typical convergence time ranges from a few seconds to
several minutes for the meshes with 30,000 vertices or less.
All the experiments were conducted on a computer with
Intel Core i7-6700 CPU @ 3.40GHz and 16GB of memory.
The convergence rate of some meshes are exhibited in Fig.
30. Note that our timing is almost the same as the one in [8],

even though our diffusion procedure has three steps.
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Fig. 30. The convergence rate of our diffusion procedure. The number
of vertices and genus for each mesh are marked in the legend; every
iteration is a single optimal Whitehead move [8, Chapter 4.2] on one
vertex. The iteration unit is millions.

6.11 Limitation and Discussion

In the following, we have some discussions about our
method.

Firstly, our method based on holomorphic quadratic dif-
ferentials has limitation in terms of cone angle deficit of −π,
but ours is a step further following holomorphic one-form
in [5], whose cone angle deficit is −2π. The holomorphic
quartic differentials [47] can produce results with cone angle
deficit of −π/2, but there are not discrete algorithms for it
on high-genus meshes by now.

Secondly, the zeros and poles correspond to the cones of
the negative and positive Gaussian curvatures. A holomor-
phic differential has only a fixed number, 4g−4, of zeros and
no poles, while the cones of positive Gaussian curvatures
are necessary to reduce the distortion in parameterization.
Therefore our conformal feature is achieved by the price of
producing only a flat metric with a restricted set of cones.
There are not holomorphic quadratic differentials on genus-
zero surfaces, therefore our approach cannot process them.

Thirdly, two paired harmonic functions can produce a lo-
cal injective result [3], [4]. As for our method, it can produce
a harmonic u-coordinate, but our v-coordinate is computed
by an approximation, which cannot be guaranteed to be
exactly harmonic. This prevents the local injectivity of our
method. Even so, as our u-coordinate is exactly harmonic, in
the extensive experiments, our method produces no or a few
triangle flips in each test on the mesh with around dozens
of thousands of triangles. The corresponding statistics are
provided in the supplementary materials.

Fourthly, theoretically, the mapping results based on
holomorphic quadratic differentials should be seamless,
because the discrete holonomies [48] from holomorphic
quadratic differentials satisfy the seamless condition [2],
[49]. Unfortunately, the seamlessness is an “exact or not”
property, which cannot be approximated, and so our ap-
proximated v-coordinate destroys the seamless property of
the mapping. Our on-going work is to solve the approxima-
tion problem to achieve a seamless parameterization.
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Fifthyly, in [47], Lei et al. proved that the positions
of zeros of holomorphic differentials one-form, quadratic
differentials, quartic differentials are not random and their
positions must satisfy the so-called Abel-Jacobi condition.
As a result, the positions of zeros (or cones) on high-genus
surfaces cannot be placed freely, as these positions are
determined optimally and globally. Thus, for our conformal
higher-genus parameterization, the positions of cones are
not freely choosable.

Sixthly, with the cotangent weight, two paired differen-
tial harmonic one-forms produce a holomorphic one-form
with respect to the current metric of the mesh [5]. In some
sense, if different weights are used [3], [4], then, basically,
the resulting one-form [4] could also be considered as a
“holomorphic” one, but with respect to another implied
“metric” of the mesh. By the discussion in the last para-
graph, this “holomorphic” one-form should also satisfy the
Abel-Jacobi condition, but under a different metric now.
Thus, we may conclude that if the positions of zeros (cones)
are fixed on a high-genus surface, the system cannot be
guaranteed to have a solution. This insolubility is already
observed experimentally and pointed out in [4]: “we noted
that with higher genus models it was sometimes difficult to find
good frames, and the frames from [50] would sometimes lead to
infeasibility.” Of course, on a genus-zero surface, the Abel-
Jacobi condition is satisfied by any positions of zeros [47].
Thus, the positions of zeros can be fixed in advance on
genus-zero meshes to obtain a solution, as demonstrated in
[51].

7 CONCLUSION

In this paper, by analyzing the reason for pole emergence in
Gortler-Thurston-Palmer’s algorithm [7], [8], we propose a
practical approach to compute discrete harmonic measured
foliations with the assistance of a novel geometric object
called foliation graph to avoid poles. Then we provide a
workflow to extract the discrete natural coordinates from a
discrete harmonic measured foliation based on the theory of
holomorphic quadratic differential. Finally, we apply discrete
natural coordinates to create a conformal and holonomy-
controllable mesh parameterizations.

Note that we do not compute the vertical harmonic folia-
tions explicitly, but take an approximation way to obtain the
v-coordinates. As far as the conformal parameterization is
concerned, our mechanism works well. As a future issue, it
is interesting to produce a vertical harmonic foliation in the
original mesh for exactly computing v-coordinates, instead
of approximating them by the dual mesh.

Currently, our diffusion step is expensive due to mil-
lions of Whitehead moves. It is interesting to look for an
acceleration scheme for it. In the future, we would also
like to explore the applications of quasi-conformal mapping
and quadrangulation with the tool of discrete holomorphic
quadratic differential. Considering that the conformal map-
ping distorts the area, the adaption of the algorithms to
area-preserving parameterization for meshes of high genus
is also a potentially interesting research direction.
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