
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Using Foliation Leaves To Extract Reeb Graphs
On Surfaces

Shaodong Wang, Wencheng Wang, Member, IEEE, and Hui Zhao

AbstractÐFor Reeb graph extraction on surfaces, existing methods always use the isolines of a function defined on the surface to

detect the surface components and the neighboring relationships between them. Since such detection is unstable, it is still a challenge

for the extracted Reeb graphs to stably and concisely encode the topological information of the surface. In this paper, we address this

challenge by using foliation leaves to extract Reeb graphs. In particular, we employ a method for generating measured harmonic

foliations by defining loops for foliation initialization and diffusing leaves from loops over the surface. We demonstrate that when the

loops are determined, the neighboring relationships between the leaves from different loops are fixed. Thus, we can use loops to

represent surface components for robustly detecting the interrelationships between surface components. As a result, we are able to

extract stable and concise Reeb graphs. We developed novel measures for loop determination and improved foliation generation, and

our method allows the user to manually prescribe loops for generating Reeb graphs with desired structures. Therefore, the potential of

Reeb graphs for representing surfaces is enhanced, including conveniently representing the symmetries of the surface and ignoring

topological noise. This is verified by our experimental results which indicate that our Reeb graphs are compact and expressive,

promoting shape analysis.

Index TermsÐReeb graph, topology, foliation

✦

1 INTRODUCTION

R EEB graphs are widely used to encode surface topo-
logical information to facilitate geometry processing,

such as topology-aware shape matching [1], [2], skeleton
extraction [3], and nontrivial loop computation [4]. Given
a scalar function f : M → R defined on a manifold surface
M , the connected components of the level sets of f (i.e.,
{p ∈ M, f(p) = α}) are contracted to single points of the
Reeb graph, where the points that are contracted from the
level sets through critical points (i.e., {p ∈ M,∇f(p) = 0})
form the nodes of the Reeb graph, and the other points
form the arcs of the Reeb graph. Clearly, the Reeb graph
is constructed by the topological changes of the level sets
of f , and the critical points correspond to the topological
changes. In general, the critical points can be classified into
the following two categories: extrema that cause a surface
component to be created or destroyed; and saddles that
reflect the transition between surface components, where
the surface components are obtained by segmenting the sur-
face along the level sets through the saddles, and they
are correspondingly classified into topological disks and
cylinders [5].

According to the above discussion, Reeb graphs repre-
sent the neighboring relationships between surface com-
ponents. To facilitate shape analysis and processing, Reeb
graphs should capture the significant surface components
to provide compact representation, and robustly represent
the neighboring relationships between these surface com-
ponents, regardless of whether the shapes have various

• S. Wang, W. Wang, and H. Zhao are with the State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences
and the University of Chinese Academy of Sciences, Beijing, China.
E-mail: {wangsd, whn, huizhao}@ios.ac.cn.
corresponding author: Wencheng Wang

poses or contain noise. Otherwise, unstable and complicated
Reeb graph extraction would prevent the implementation of
downstream tasks. For this, existing methods have studied
many functions, such as height functions [6], geodesic dis-
tances [1], [3], and harmonic functions [7], [8], to generate
isolines (level sets of 2D functions) to extract the Reeb graph
on the surface. Unfortunately, these methods have various
shortcomings regarding generating critical points, so more
surface components than required may be generated or the
neighboring relationships between the surface components
may be incorrectly determined, as illustrated in Fig. 1(a)(b).
A detailed discussion on this is provided in Section 2.

In this paper, we address the challenge of extracting sta-
ble and concise Reeb graphs that capture only the required
surface components and robustly represent the neighboring
relationships between them using measured foliations. Sim-
ply speaking, the measured foliation on a two-manifold
decomposes it into lower-dimensional submanifolds, which
are called its foliation leaves (or leaves for short), where
the 1-dimensional leaves are curves on the surface, while
the 0-dimensional leaves are points called the singularities
[10]. Theoretically, the measured foliation is equivalent to
a quadratic differential, and when its leaves are closed,
the leaves through saddles can segment the surface into
topological disks and cylinders [?], [11]. Motivated by this,
we propose a method that involves extracting surface com-
ponents using the measured foliation and then generating
the Reeb graphs. To the best of our knowledge, no imple-
mentational method has been proposed for this purpose. In
our method, the input is a triangular mesh that represents
the closed orientable manifold surface, and we adopted the
methods proposed by Palmer [12] and improved by Zhao
et al. [?] to generate closed measured foliations. With the
methods of [?], [12], some loops of triangles of the mesh are

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1. Comparison of the extracted Reeb graphs using a harmonic function [9] (a)(b) and our method (c)(d) with the same extrema/poles determined
on the hand in different poses. Clearly, our results are stable, but the results of the harmonic function are not. Our method also allows the user
to insert a loop in red to generate one’s desired Reeb graphs in (e)(f), where the thumb is not directly connected to the other four fingers. Here,
different surface components are illustrated in different colors. Meanwhile, different types of critical points and singularities are marked in differently
colored spheres as shown in the legend, which are also used in the following figures throughout this paper. We denote a pole/extrema as P and a
saddle as S. Using the harmonic function, center poles and More saddles can be represented by its extrema and saddles respectively, but not for
thorn poles and tripod saddles [10]. As for our method, all these critical points and singularities can be represented.

first defined to initialize a closed measured foliation whose
leaves are contained in the loops, and then the leaves of the
loops are diffused over the mesh to obtain a harmonic closed
measured foliation. As a result, the mesh can be segmented
into disk and cylinder components along the leaves through
the singularities of the foliation, and the Reeb graph can be
extracted thereof. In Section 4.1, we demonstrate that there
is a one-to-one correspondence between the surface com-
ponents and input loops, so our Reeb graph can concisely
represent the surface components as intended. Meanwhile,
the neighboring relationships between these surface compo-
nents are fixed as long as the loops for representing surface
components are determined, i.e., meaning stable Reeb graph
extraction. This method is superior to the existing methods.
As illustrated in Fig. 1, with a harmonic function [9], the
Reeb graph arcs between saddles S2, S3, S4 in (a)(b) do not
correspond to significant parts of the shape, and the Reeb
graphs in (a)(b) are not consistent with each other for these
two similar models, due to the instability of S2 ∼ S4. Using
our method, the resulting Reeb graphs in (c)(d) are compact
and the same for both models.

To effectively implement our method, we developed the
following novel measures:

• Novel measures for determining loops are developed
to effectively capture significant surface components,
by which Reeb graphs can be robustly extracted, as
discussed in Section 4.2. This also helps the user
generate suitable Reeb graphs for improving shape
analysis. As illustrated in Fig. 1(e)(f), the user can
manually insert a loop located in the middle of the
palm so that the thumb is not directly connected to
the other four fingers in the extracted Reeb graph.

• Novel measures are developed to improve two as-
pects of the methods of [?], [12]. The first is to use
mean value weights to enable foliation generation
without extra poles on non-Delaunay meshes, while

this cannot be guaranteed by the methods of [?], [12]
due to its use of cotangent weights, which will be
discussed in Section 5.1. The second is to explicitly
generate leaves to detect the saddle leaves to deter-
mine the neighboring relationships between surface
components, while the methods of [?], [12] only
implicitly encode leaves on the edges, as discussed
in Section 5.2. Benefitting from this, the extracted
Reeb graphs can also be easily embedded in R

3 for
skeleton extraction.

As our loops can be determined intuitively, our method
can potentially produce Reeb graphs with enhanced surface
representation, such as effectively revealing surface symme-
tries and removing topological noise disturbances, which
will be discussed in Section 6.2.

In sum, we have the following contributions:

• A novel method to extract stable and concise Reeb
graphs using foliation leaves is proposed, which has
the potential of Reeb graphs enhanced for shape
analysis.

• The methods of [?], [12] are improved to more effec-
tively generate foliations for Reeb graph extraction.

2 RELATED WORKS

2.1 Reeb Graphs

Many methods have been proposed for extracting Reeb
graphs on surfaces. When only the combinatorial struc-
ture is required, an efficient minimal contouring method
is proposed [13] that only uses isolines of the saddles
without sweeping, which is enough for applications such
as parameterization. When the geometric characteristics of
the surface must be well represented, Cole-McLaughlin et
al. [14] suggested sweeping the isolines of the function over
the surface to construct a Reeb graph that can be embedded

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

in R
3 and act as a skeleton of the surface. Since Reeb graphs

were introduced in computer graphics by Shinagawa et al.
[6] in 1991, they have been applied in a wide variety of
applications, including scientific visualization [15], shape
matching [1], [2], shape chartification [8], [9] and nontriv-
ial loop computation [4], and many studies for effectively
extracting Reeb graphs have been performed, e.g., handling
high-dimensional manifolds [16], simplicial complexes [17],
[18], [19], [20], [21], time-varying scalar functions [22], and
parallel computation [23], [24]. It is beyond the scope of this
paper to survey the existing methods. For a comprehensive
understanding, please refer to [24], [25], [26]. Here, we
mainly briefly discuss the extraction of stable and concise
Reeb graphs on orientable 2-manifolds.

As discussed in Section 1, critical points play a key role
in extracting Reeb graphs. For this, there are many studies
in the existing methods, as discussed in the following.

Many methods use height functions [4], [27], [28] and
geodesic distances [1], [2], [3]. The height functions are
easy to compute. However, it is not an easy task to define
a height function with its upright direction meaningfully
aligned with the complex surfaces under investigation, and
the Reeb graph may change dramatically when the upright
direction changes. Meanwhile, height functions are sensitive
to the geometrical details on the surface; therefore, more
extrema than desired may be produced. Thus, the Reeb
graphs extracted by height functions cannot handle com-
plex surfaces well. Geodesic distances are intrinsic to the
surface and invariant to rigid motions; thus, they can handle
complex surfaces. Unfortunately, geodesic distance compu-
tation is very sensitive to local geometric perturbations;
thus, many auxiliary extrema would be generated, which
leads to overcomplicated Reeb graphs that prevent shape
understanding. To suppress the influences of local geometric
perturbations, the overall characteristics of the surface are
taken into account by the use of spectral distances [29] and
Laplacian eigenfunctions [2], [30] to avoid producing too
many extrema; however, these methods cannot completely
solve this problem because they cannot guarantee that no
auxiliary extrema are produced.

As the harmonic function can generate extrema only at
prescribed points due to the maximum principle [31], some
methods [7], [9], [30] suggest using the harmonic function to
extract structurally-simple Reeb graphs. Here, the harmonic
function is computed by the Laplace equation with Dirichlet
boundary conditions, which can be set on the feature points
of a mesh [30]. However, saddle points with similar but
different function values would have more isolines through
the saddles, which would create extra surface components,
causing cluttered and unstable Reeb graphs, as illustrated in
Fig. 1(a)(b).

For handling the problems caused by nearby saddles,
some methods, such as the extended Reeb graph [32] and
multi-resolution Reeb graphs [1], approximate the Reeb
graph by discretely sampling some isolines rather than
sweeping all the isolines. The region between two neigh-
boring isolines forms a strip, and each strip is contracted
to a single point of the Reeb graph. In this way, the nearby
saddles could be placed in one strip, often called a critical
area [32], and so only one node in the Reeb graph is pro-
duced. This is also helpful for simplifying the Reeb graph

and handling degenerate critical points. However, properly
sampling the isolines is not a trivial task.

In general, Reeb graphs are expected to facilitate shape
analysis and processing, so that Reeb graphs should repre-
sent the topology of the surface as succinctly as possible.
As Reeb graphs may be generated that are too large or
complex to be used conveniently, further abstraction of the
Reeb graphs is required. For this, some methods propose
constraining the number of critical points by numerically
approximating the function [28], [33], while some methods
abstract the Reeb graph by eliminating some critical points
to enable a compact representation [34], [35], [36]. As these
methods cannot avoid extra surface components caused
by saddles with similar but different values, they cannot
promise the extraction of stable and concise Reeb graphs
when the saddles are not well determined. For removing
small surface components, the approach of [8] suggests
that the user can interactively collect saddles with similar
values into the same saddle isoline. Unfortunately, handling
complex surfaces in such a way could be time-consuming
because the approach of [8] needs to edit the saddles in pairs
and each editing requires multiple user interactions.

2.2 Foliation Generation

In computer graphics, foliation has been used for improve-
ment, such as using geodesic foliation to guide weaving
pattern designs for easy manufacturing [37] or construct-
ing a bijective map between two surfaces or volumes by
integrating the mappings between the corresponding leaves
of the two foliations for the surfaces or volumes using sim-
plicial foliations [38]. In our treatment, we need harmonic
measured foliations; thus, a brief discussion of harmonic
measured foliations follows.

Harmonic measured foliations are closed and can be
conveniently implemented on surface meshes [12], [39],
[40], and among them, the method proposed by Palmer
[12] provides an easy way for us to adaptively capture
surface components, as discussed in Section 1. Thus, the
method of [12] is a good choice for our foliation generation.
Considering that the method in [12] may generate poles,
which is not desired for conformal parameterization, Zhao
et al. [?] developed an improvement to avoid such poles.
Therefore, our method for foliation generation is actually
based on the improved method of [?].

Unfortunately, the foliations generated with the methods
of [?], [12] cannot be directly used for our Reeb graph
extraction, as discussed in the following. 1) According to
the study in [8], the surface components that Reeb graphs
represent can be classified into two categories: disk com-
ponents and cylinder components. For representing disk
components, poles are required [?], [11]. Although [12] may
generate poles, the positions and the number of poles are not
controllable. This is not desired for extracting Reeb graphs,
as we need to control poles to represent the desired disk
components. 2) In [?], [12], loops are allowed to be set
manually, but manually prescribing many loops on complex
surfaces is a difficult task. 3) The methods of [?], [12] only
implicitly encode the leaves of the foliation, which is not
sufficient for detecting saddle leaves for constructing Reeb
graphs, as we need explicitly presented saddle leaves to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

distinguish surface components. 4) The methods of [?], [12]
take Delaunay meshes as input, but the surface meshes in
applications cannot always meet such a requirement.

To solve the above problems so that foliation leaves
can be used effectively for our Reeb graph extraction, we
developed many novel measures, which are discussed in
Sections 4 and 5.

3 PRELIMINARIES

Here, we first review some background regarding measured
foliations and then describe the methods of [?], [12] for
foliation generation on meshes.

3.1 On Measured Foliations

Measured foliations. A measured foliation F on a closed
orientable surface M is a foliation with finite singularities
together with a transverse measure that is invariant under
transverse homotopy [?]. It has been proved that for any
measured foliation F , there is a unique (meromorphic)
quadratic differential φ(z)dz2 that induces F [?], [11]. Thus,
the measured foliation can be studied using the coordinate
functions associated with the quadratic differential.
Quadratic differentials. A quadratic differential on a Riemann
surface is a set of complex-valued functions φi(zi) defined
in the local charts Ui, and on the overlapping domains
between two charts Ui, Uj , the local parameters zi, zj for
these functions transform accordingly with the ºquadraticº
rule, as follows [11]:

φjdz
2
j = φi(

dzi
dzj

)2 (1)

Singularities. The singularities of the measured foliation
correspond to the critical points of the quadratic differential,
which are classified into zeros and poles. A point zi ∈ C is
called a zero (also called a saddle, which is used throughout
this paper) of the quadratic differential if φi(zi) = 0, and a
pole if 1/φi(zi) = 0 [11].
Leaves. The leaves of the measured foliation correspond
to the horizontal trajectories of the quadratic differential,
which are lines on the surface where Im(

∫
√

φ(z)dz) =
const [11]. Intuitively, it locally resembles an isoline y =
const in the coordinate chart Ui, but may correspond to
different isovalues in different charts. We call a leaf a regular
leaf if it does not cross a singularity, a saddle leaf if it connects
to saddles, or a pole leaf if it connects to poles (including
isolated center poles). Note that a saddle leaf or a pole leaf
can connect multiple singularities together. Saddle leaves
and pole leaves are collectively referred to as critical leaves.
Closed measured foliation. A measured foliation is said
to be closed if its regular leaves are closed curves [10].
According to [?], [11], the surface can be segmented into
topological disks or cylinders using the saddle leaves of
the closed measured foliation, where the regular leaves in a
disk or cylinder are freely homotopic to each other, and not
freely homotopic to the regular leaves in the other disks and
cylinders. The segmented disks and cylinders are regarded
as the surface components in our paper.

Based on the above discussion, similar to the isolines of a
scalar function, we can use the leaves of a closed measured
foliation to extract the Reeb graph. Specifically, each critical

Fig. 2. The pipeline of the methods of [?], [12]. (a) A loop of triangles
is defined for foliation initialization, where the same foliation value,
say 5, is assigned to the consecutive edges of the loop, meaning º5
leavesº (illustrated by colored stripes) crossing the edges. (b) The edges
incident to a vertex is divided into several sectors, say 2 sectors in red or
green, where the leaves crossing them are correspondingly illustrated.
(c) The harmonic foliation is obtained by updating the foliation values
on edges until convergence. (d) Singularities (marked in a purple point)
may occur as the leaves from loops diffuse. (e) A Whitehead move is
applied for splitting a singularity in (d) into two singularities (marked in
two green points), and vice versa.

leaf corresponds to a node of the Reeb graph, while each
surface component corresponds to an arc of the Reeb graph.
Whitehead equivalence. Two measured foliations are said
to be Whitehead equivalent if one can be deformed into the
other either by 1) isotopic deformation of leaves or 2) split-
ting a singularity into two that are connected by a leaf, and
vice versa [41]. These two operations are called Whitehead
moves.

3.2 Generating Harmonic Measured Foliation on Trian-

gular Meshes

In the discrete setting, the surface M is represented by a
triangular mesh M(V,E, T), where V , E and T are the sets
of vertices, edges and triangles for mesh M .
Definitions. For harmonic measured foliation generation on
M , Palmer [12] proposes the discrete measured foliation F
as a map F : E → R

≥0, where a nonnegative value wij ,
called the foliation value, is assigned to each edge eij of the
mesh, meaning ºthe number of leavesº crossing the edge, as
illustrated in Fig. 2(a-c).

According to [12], the singularities of F can be found
on the vertices and triangles of the mesh by examining the
index of F as follows. A corner ∠ijk between edges eij and
ejk is said to be closed if wij +wjk = wkj . Then, the index of
a vertex v is iv = 2−O(v) + Z(v), where O(v) denotes the
number of closed corners around v, and Z(v) denotes the
number of edges adjacent to v with zero foliation values.
Accordingly, the vertex represents a regular point, saddle,
or pole of F if iv is zero, negative, or positive respectively.
Similarly, the index of a triangle t is it = 2 − X(t) − Z(t),
where X(t) denotes the number of nonclosed corners in
t, and Z(t) denotes the number of edges in t with zero
foliation values. If it is negative, it means that the triangle
contains a saddle (poles are not generated in triangles).
Algorithm. Palmer [12] proposes an algorithm for generat-
ing harmonic measure foliations on M , which consists of
two steps, as discussed in the following.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

1) Initialization. A set of disjoint, nontrivial triangle loops
that are not freely homotopic to each other L and real values
K are defined to initialize the foliation F (0). A triangle loop
li ∈ L is a cycle of triangles with shared edges between
them, and the foliation value wij on the shared edge eij is
set as ki ∈ K . Meanwhile, the foliation values on the other
edges of the mesh are each assigned zero values. Intuitively,
F (0) is initialized as a closed measured foliation with its
leaves contained in the input loops, as illustrated in Fig. 3(a).
2) Optimization by discrete Whitehead moves. The initial-
ized foliation F (0) is updated iteratively with a gradient-
descent like algorithm until a harmonic foliation F is ob-
tained. We denote the edges incident to a vertex vi as Ei, and
they are divided into sectors by the closed corners. In each
iteration, the foliation values on the edges in Ei are updated
by the discrete Whitehead move, as shown in Fig. 2(b). Each
discrete Whitehead move runs by subtracting a gradient
value δ from wij of eij in one sector, say the sector S marked
in red edges, and adding δ to wij of eij in the other sectors
marked in green edges, where the gradient value δ is com-
puted by (

∑

eij∈S αijwij −
∑

eij∈Ei\S
αijwij)/

∑

eij∈Ev
αij ,

and αij are the cotangent weights [42] of the edges. With
Whitehead moves applied iteratively, the gradient values
over the mesh decrease until convergence, so the harmonic
measured foliation is generated, as shown in Fig. 2(c).

With the above algorithm, the nonzero foliation values
on the edges of the initial foliation are diffused over the
mesh, meaning that the leaves are diffused over the surface.
Here, with a discrete Whitehead move, a singularity can be
split into two singularities that are connected by a leaf, and
vice versa, as illustrated in Fig. 2(d)(e).
Improving the algorithm of [12]. The algorithm of [12] may
produce poles at unintended positions. A triangle tijk is
said to be uncovered if wij = wjk = wki = 0, and the
connected uncovered triangles form an uncovered region. If
an uncovered region forms a topological disk, then a pole
may be created inside this region [12]. To avoid poles for
conformal parameterization, Zhao et al. [?] proposed an
improvement to prevent uncovered regions from forming
topological disks, as discussed below. A Whitehead move
is defined as a critical move if it turns any neighboring
vertex from a pole to a regular vertex [?]. Considering
that a critical move will potentially cause some uncovered
regions to form a topological disk, Zhao et al. [?] divide the
optimization algorithm of [12] into multiple stages. In the
first stage, critical moves are prevented until any vertex of
the uncovered triangles causes a critical move when it is
processed. Then, critical moves are applied to these vertices,
and Zhao et al. [?] prove that no pole can be created at
this stage. In this way, the enhanced algorithm can generate
pole-free harmonic measured foliations.

4 USING LOOPS TO CAPTURE SURFACE COMPO-

NENTS

A Reeb graph is constructed by detecting the surface com-
ponents and the neighboring relationships between them.
As discussed in Section 1, we use the methods of [?],
[12] to generate the harmonic measured foliation and then
distinguish surface components using the saddle leaves of
the foliation.

(a1) (a2) (a3) (b1) (b2) (b3)

Fig. 3. Our pole loops (in orange) around a point (a1) or a line segment
(b1) are generated, and then used for foliation initialization (white-teal
stripes) (a2, b2), by which the corresponding harmonic foliations are
generated (a3, b3).

In Section 4.1, we first demonstrate that our method
can concisely capture the surface components, and stably
represent their neighboring relationships as long as the
loops for foliation generation have their homotopy types
determined. Then, in Section 4.2, we introduce our measures
to automatically generate loops to conveniently capture
surface components.

4.1 Capturing Surface Components and the Neighbor-

ing Relationships Between Them

Capturing surface components concisely. As introduced
in Section 3, the methods of [?], [12] generate foliations
on the surface by Whitehead moves, which only deform
the leaves isotopically, so the diffused leaves from a loop
are homotopic to each other. As a result, with a nontrivial
loop, which has been used in [?], [12], the diffused leaves
from this loop will represent a cylinder region. Similarly,
with a trivial loop around a vertex or line segment, the
diffused leaves from this loop will represent a disk region,
where a pole leaf will be generated at the vertex or line
segment, as shown in Fig. 3. Such a loop is called a pole
loop. Therefore, in our method, we use the nontrivial loops
to capture cylinder components and use the pole loops to
capture disk components. According to the discussion in
Section 3.1, these surface components can be separated by
the saddle leaves of the foliation.

To concisely represent surface components, we require
that each surface component is represented by only a loop.
Here, we regard each pole leaf as a puncture, so that the
loops for representing different surface components should
be of different homotopy types. Thus, the leaves from
one loop must correspond to a unique surface component.
Meanwhile, a surface component whose leaves are not ho-
motopic to any loop cannot appear. As a result, the surface
components always have a one-to-one correspondence with
the input loops, as long as the loops are disjoint and not
freely homotopic to each other. This means that we can
concisely capture the surface components.
Representing neighboring relationships stably. In our
method, several surface components are considered neigh-
bors of each other if they are adjacent to the same saddle
leaf. For a set of input loops, if we alter the initial foliation
values of the loops or shift the positions of the loops ho-
motopically, the shapes of the surface components would
be different. Even so, their neighboring relationships will
remain the same. Let us prove this by contradiction as
follows.

Assume a surface component C and a saddle leaf S
were originally adjacent (Fig. 4(a)), but are no longer ad-
jacent when we change the loops as described in the above

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

X

Fig. 4. Stably representing the neighboring relationships between sur-
face components when the related loops are determined, as shown in
(a) and the right one of (b), because the left one of (b) is impossible to
occur. The obtained Reeb graph is in (c).

paragraph (Fig. 4(b, left)). Then, there must be some sur-
face component C∗ between C and S to separate them.
Clearly, C∗ should not be homotopic to any adjacent surface
components; otherwise, they should be combined into one
component. Therefore, the loop used to capture C∗, denoted
as l∗, should not be homotopic to the loops to represent
these adjacent surface components as well. From the original
configurations, we know that C∗ was not in between C
and S before the loops are changed. In order for C∗ to
separate C and S after the loops are changed, the leaves
diffused from l∗ must overlap with some leaves of the
loops that are originally adjacent to S. However, by the
mechanism of Whitehead moves [12], the leaves diffused
from different loops cannot overlap each other. Thus, there
is a contradiction. As a result, such a surface component C∗

cannot occur, and the neighboring relationship between C
and S must be fixed as long as the loops do not change their
homotopy types (Fig. 4(b, right)), which would result in the
same Reeb graph (Fig. 4(c)).

4.2 Loop Determination

In our method, the loops can be manually prescribed by
the user interactively. However, this will be troublesome in
some cases, such as when handling complex or high-genus
surfaces. Thus, we develop measures for automatically gen-
erating loops to effectively capture the surface components,
as discussed in the following subsections.

4.2.1 Automatic loop generation

Pole loops are used to capture disk components, and the
disk components are generally similar to protrusive parts
of a shape. Thus, we can apply existing methods to detect
feature points [43] and lines [44] on the surface, and then
generate the pole loops around them, as discussed in Sec-
tion 4.1.

Nontrivial loops are used to capture cylinder compo-
nents, which inevitably represent the handles or tunnels
of holes on high-genus surfaces. For this, we develop a
measure to automatically generate nontrivial loops after the
pole loops are defined. By investigating the leaf diffusion
procedure, we can detect the topological changes of the
diffused leaves that are caused by holes of the surface.
Thus, we can generate new nontrivial loops to represent

Fig. 5. Splitting (a1-a3) and combining (b1-b3) for generating loops
adaptively. With a critical move applied to the yellow vertex on the
boundaries (highlighted in green) of the regions covered by the leaves
(a1, b1), the topology of the boundaries would change (a2, b2). By this,
new loops (in orange) can be adaptively generated (a3, b3).

the surface component around the holes, as discussed in the
following.

We observe that with the leaves diffusing from a loop,
a critical move would occur when the leaves approach the
hole, as illustrated in Fig. 5(a1). This is because there are
few mesh edges to be reached in the region around the
hole when the diffused leaves arrive at the hole. Similarly,
when two loops for two handles of a hole have their leaves
diffused, there is also a critical move occurring when the
leaves from the two loops are met during their diffusion, as
illustrated in Fig. 5(b1). Therefore, we can apply a critical
move to detect topological changes for the diffused leaves.
For the case in (a1), with a critical move applied, the bound-
ary around the region covered by the diffused leaves would
be split into two boundaries, as illustrated in Fig. 5(a2), and
these two boundaries can be used to form two loops, as
illustrated in Fig. 5(a3). Similarly, for the case in (b1), with
a critical move applied, the two boundaries for the region
covered by the leaves of the two loops would be combined
into one boundary so that this boundary can be used to form
a new loop. Correspondingly, we develop two measures for
adaptively generating loops, as listed below.

• Splitting. The region covered by the diffused leaves
from a loop has one boundary before a critical move
(a1) and two boundaries after the critical move (a2).
Thus, two new loops are formed (a3).

• Combining. The regions covered by the diffused
leaves from two loops have two boundaries before a
critical move (b1) and one boundary after the critical
move (b2). Thus, one new loop is formed (b3).

In the above paragraph, we discuss how to apply a criti-
cal move for a splitting or combining operation to generate
new loops, by which the neighboring relationships between
three surface components can be represented. When more
than three surface components are neighboring with each
other, many critical moves can be found, and we apply
them simultaneously to generate the corresponding new
loops, e.g., a loop can be split into more than two loops,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

or more than two loops are combined into one. Thus, the
neighboring relationships between more than three surface
components can be well represented.

Using the above measures, we may produce superfluous
loops that are homotopic to the existing loops. For this,
we developed measures to remove them, as discussed in
Section 4.2.2.

In our measures for automatic loop generation, combin-
ing loops in different orders may produce different newly
generated loops, causing different Reeb graphs, as illus-
trated in Fig. 6. This is a limitation of our method and
further study on how to define loops to extract the desired
Reeb graphs is needed.

4.2.2 Generating Loops Concisely

In our method, we employ loops to represent surface com-
ponents, so we try to avoid generating more loops than
required for extracting concise Reeb graphs. For the newly
formed loops, we will check whether they are superfluous
and remove them if they are, as discussed in the following.

In our method, initially, the pole loops representing disk
components are determined, so we will discard any newly
formed loops that would correspond to a disk component.
Considering that a disk component is homotopic to a point
on the surface, we check whether the newly formed loop
can be contracted to a point. This is done by using the
method in [45], where the mesh and the loop are first cast to
a system of quads, then the loop is iteratively shortened to
check whether it can be reduced to a point. If so, the loop is
removed.

In Section 4.2.1, we discuss how to generate loops
around holes. As the loops are generated locally with dif-
fusing leaves from the existing loops, we will check whether
the newly formed loops are freely homotopic to an existing
loop. This is also done by using the method in [45], where
the mesh and the loop are first cast to a system of quads, and

Fig. 6. The automatically generated loop l5 may be different when
the orders for combining existing loops are different. (a) l1 and l3 are
combined earlier, and (b) l1 and l2 are combined earlier.

Combining Splitting

(a) Pole loops only (b) Adaptive loop generation

Splitting Splitting Combining

Fig. 7. Adaptively generating nontrivial loops for representing the holes
on a high-genus surface. (a) The Reeb graph from pole loops alone can-
not represent the holes of the surface. (b) We can adaptively generate
new loops in orange lines and determine the usable ones in solid blue
lines for extracting the Reeb graph to represent the holes.

Fig. 8. The pipeline of our algorithm. (a) Loop input. (b) Harmonic mea-
sured foliation generation. (c) Detection of critical leaves (black lines)
and surface components (colored regions). (d) Reeb graph extraction.
(e) Reeb graph embedded in R3.

the loop is transformed to a canonical loop in its homotopic
class. If two loops are transformed into the same canonical
loop, they are freely homotopic to each other and one loop
would be discarded. As a result, we can adaptively and
concisely generate nontrivial loops to represent the handles
of the holes.

With our measures to generate nontrivial loops, the Reeb
graphs on high-genus surface can be conveniently extracted.
As illustrated in Fig. 7(b), after the pole loops are deter-
mined, the nontrivial loops can be adaptively generated to
represent the cylinder components, by which the extracted
Reeb graph well represents the topological structure of the
surface. Otherwise, the extracted Reeb graph can only rep-
resent the interrelationships between the disk components
corresponding to pole loops, as shown in Fig. 7(a).

5 ALGORITHM

In this section, we present our algorithm for Reeb graph
extraction on a triangular mesh for a closed manifold sur-
face; the steps of the algorithm are illustrated in Fig. 8 and
listed in Algorithm 1. To effectively implement these steps,
we developed some novel measures, as discussed in the
following subsections.

Algorithm 1 Reeb Graph Extraction Using Foliation Leaves.

Input: Mesh M , triangle loops L.
Output: Reeb graph RG(N,A) (N denotes nodes, A de-

notes arcs).
1: Generate the foliation F using L. ▷ Section 5.1
2: Find the critical leaves LC of F , and decompose M into

surface components C using LC . ▷ Section 5.2
3: Construct the nodes N and arcs A of RG(N,A) based

on LC and C . ▷ Section 5.3
4: (optional) Embed RG(N,A) in R

3. ▷ Section 5.4

5.1 Improved Foliation Generation

As mentioned in Section 3.2, the algorithm of [?], [12] uses
the Laplacian weights αij to generate the harmonic foliation.
Unfortunately, their used weights are the cotangent weights
αij =

1
2 (cot θp+cot θq) [42], as illustrated in Fig. 9(a), which

may be negative on non-Delaunay meshes. Thus, the non-
Delaunay meshes must be remeshed to be Delaunay as a
preprocessing step in [?], [12]. As such, remeshing might
change the underlying geometry or add many vertices to
the original mesh [46], and so the algorithm of [?], [12] is
prevented from handling non-Delaunay meshes well.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(a) (b)

Fig. 9. Laplacian weight com-
putation for foliation generation.
(a) Cotangent weights. (b) Mean
value weights.

To solve this problem,
we choose the mean value
weights αij = (tan (ψ1

ij/2) +
tan (ψ2

ij/2))/||eij || [47], as il-
lustrated in Fig. 9(b). Since the
angle ψij of a triangle can-
not be over 180 degrees, the
mean value weights must be
positive. As also discussed in
[48], the mean value weights
can be used to mimic the Laplace-Beltrami operator ∆.
Although this approximation is not as good as that obtained
by the cotangent weights, this only affects the geometry and
smoothness of the leaves and does not affect the topology
of the foliation, as illustrated in Fig. 10. Therefore, our
improved foliation generation can handle non-Delaunay
meshes well.

The mean value weights are intrinsic to the mesh [47],
so our algorithm is robust to models with nonrigid defor-
mation. In addition, the mean value weights are always
positive regardless of how the surface is triangulated, so our
algorithm can effectively handle meshes with different reso-
lutions and noisy meshes. The corresponding experimental
results are provided in Section 6.1.

Fig. 10. Comparison between using cotangent weights and mean value
weights for foliation generation. On the Delaunay mesh, the obtained
foliation using cotangent weights (a) is comparable to that using mean
value weights (b). On the non-Delaunay mesh, the obtained foliation
using cotangent weights (c) has smoother leaves than that using mean
value weights (d), but it has extra singularities (marked in yellow points
in the blue circles), different from those in (a)(b)(d).

5.2 Extracting Critical Leaves and Surface Compo-

nents

With the obtained foliation on the mesh, we first extract
the critical leaves, and then segment the mesh along the
critical leaves into disk and cylinder components, following
the steps listed in Algorithm 2. The general idea is to
convert the foliation into a differential one-form and then
integrate it into a scalar function, whose isolines would be
the leaves of our foliation, as discussed in Section 3.1. Here,
we propose a novel measure in Step 4 to explicitly extract
the leaves of the foliation. This differs from the methods of
[?], [12] that implicitly encode leaves, which is enough for
parameterization but not for extracting the Reeb graph. The
other steps are generally covered in previous works, and we
briefly discuss them here to be self-contained.

5.2.1 Locating Singularities

Here, we iterate over all the vertices and triangles of the
mesh and check their indices to determine whether they are
singularities, as described in Section 3.2. For integration and
leaf tracing, all the singularities should be at the vertices of
the mesh. For this, we follow the method of [?] to subdivide

Algorithm 2 Extracting Surface Components.

Input: Mesh M , foliation F .
Output: Critical leaves LC , surface components C .

1: Locate the singularities Sing of F . ▷ Section 5.2.1
2: Cut M into a topological disk MF with no singularity

inside the disk. ▷ Section 5.2.2
3: Integrate F on MF into a scalar function f .

▷ Section 5.2.3
4: Trace critical leaves LC of F using f . ▷ Section 5.2.4
5: Segment M along LC into surface components C .

▷ Section 5.2.5

the saddle triangle into three subtriangles with three edges
and one vertex inside. The foliation values on the new edges
are set based on some closed-form formula [?], such that the
new triangles are regular while the new vertex is a saddle. In
this way, the saddle triangle is turned into a saddle vertex.

5.2.2 Mesh Cutting

For the foliation on the surface mesh M to be integrable, M
should be cut into a topological disk MF with the singular-
ities of F on its boundary. Here, we adopt two measures for
handling genus-0 meshes and high-genus meshes, similar
to [49]. For the genus-0 mesh, we simply connect all its
singularities using a spanning tree and use the tree edges
to cut the mesh, as shown in Fig. 11(a). The spanning
tree is constructed using a union-find data structure with
the singularities as seeds. For the high-genus mesh, we
first use the homotopy basis of the mesh to cut it into a
topological disk. The homotopy basis is computed by the
greedy algorithm in [50], which is based on the classic tree-
cotree decomposition [?]. Then, we build a spanning tree to
connect the singularities to the boundary of the disk using
the same measure for handling genus-0 meshes as above,
as shown in Fig. 11(b). In this way, a closed mesh of any
genus can be cut open to form a topological disk, and the
singularities are on the boundary of the disk.

(a) topological sphere (b) high-genus

Fig. 11. Cut the mesh into a topological disk. (a) The genus-0 mesh
is cut along the black edges that connect the singularities together. (b)
The high genus mesh is first cut along the yellow edges which represent
the homotopy basis, then cut along the black edges that connect the
singularities to the homotopy basis.

5.2.3 Foliation Integration

In this step, we adopt the corresponding measures in [12].
As the foliation has no singularities inside MF , its foliation
valueswij can be treated as an exact differential one-form on
MF . Thus, a piecewise-linear function f : V → R can be ob-
tained by integrating the one-form along the oriented edges.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

If an edge eij is oriented from vi to
vj , the function value at vertex vj is
computed as f(vj) = f(vi) + wij ; oth-
erwise, f(vj) = f(vi) − wij . We first
arbitrarily assign an orientation to an
arbitrary edge and then orient all the
remaining edges with respect to the
one-form using a breadth-first search on the triangles. Due
to the closedness of the one-form, all the edges can be
oriented consistently [12]. After that, we arbitrarily pick a
vertex v0 as the origin and set its function value f(v0) = 0,
and then integrate the function values on all the other
vertices using a breadth-first search on the vertices. An
example is shown in the inset, where the black values on
the edges stand for the one-form on these edges, the arrows
stand for the orientation for integration, and the blue values
on the vertices indicate the scalar function after integration.

5.2.4 Tracing Leaves

As mentioned in Section 3, the leaves of a measured foliation
on a disk chart Ui without singularities inside it correspond
to the isolines of the induced scalar function. On the trian-
gle mesh, the induced function is piecewise-linear, whose
isoline is simply a polyline, which can be easily computed
by tracing along the triangles that are crossed by the isoline,
as described by many previous works, such as [28].

In our treatment, the mesh is cut by some edges to form a
single disk chart MF , and the cut edges form the boundary
of MF . Clearly, such an edge eij on M would correspond to
two edges e0ij , e1ij on the boundary of MF ; thus, a leaf on the
mesh may be separated into several isolines on the disk, and
they should be glued to form a closed leaf on the original
mesh M , as illustrated in Fig. 12. For this, we resort to the
transition function φ of the measured foliation [41] to find
the corresponding isolines of a leaf. The transition function
is defined for each cut edge individually; for example, φij

for the cut edge eij . If the isoline on the triangle containing
e0ij has function value y, its corresponding isoline on the tri-
angle containing e1ij would have the function value φij(y),
by which the corresponding isoline can be obtained for the
gluing. We denote the vertices of e0ij , e

1
ij as v0i , v

0
j , v

1
i , v

1
j and

denote their function values as y0i , y
0
j , y

1
i , y

1
j , respectively.

Then, φij for the cut edge eij is defined as follows, which
is by one of the two vertices of edge eij , and the vertex can
be randomly selected to form the transition function because
wij = |y0i −y

0
j | = |y1i −y

1
j |. If the edges e0ij , e

1
ij have opposite

orientations with respect to the one-form,

φij(y) = (y1i + y0i − y), (2)

otherwise,

φij(y) = (y1i − y0i + y). (3)

As illustrated in Fig. 12, we obtain the green leaf of the
foliation in (a) by gluing the green isoline on the left and
the two green isolines on the right in (b). Let us assume that
the green isoline on the left has function value y. When the
isoline is traced to arrive at triangle tadb, its corresponding
isoline across triangle tabc, which shares the cut edge with
tabd, would have the value φab(y). Thus, the green isoline in
tabd is further traced in tabc.

Fig. 12. For a mesh (a), it is cut open along the black edges into
a topological disk (b). Then, a function is obtained by the generated
foliation on the mesh to produce isolines on the disk, illustrated by some
parallel lines in different colors in (b). At last, the isolines on the disk
are glued to generate the leaves on the mesh, illustrated by the green
closed line in (a).

By the measures discussed above, a critical leaf can be
traced from a singular vertex. Note that the center pole is a
standalone point and is taken as a critical leaf by itself.

5.2.5 Extracting Surface Components

In this step, we simply segment the mesh along the obtained
saddle leaves to produce disjoint surface components, as
illustrated in Fig. 8(c). Here, pole leaves are not used because
they are inside disk components and are not necessary for
surface segmentation.

5.3 Reeb Graph Extraction

With the extracted critical leaves and surface components,
the nodes and arcs of the Reeb graph are obtained, by which
the Reeb graph is constructed, as shown in Fig. 8(d). Here,
we first form a Reeb graph node for each critical leaf, and
then, for each surface component, we examine which two
critical leaves are on its boundaries and add an arc between
the nodes that represent these two critical leaves.

5.4 Embedding Reeb Graph in R
3

By the measures in Section 5.3, using the critical leaves
suffices to build the combinatorial structure of the Reeb
graph. For other tasks such as visualization and skeleton
animation, the Reeb graph needs to be embedded in the
Euclidean space. Therefore, we use the centroids of each
critical leaf as the Euclidean positions for the nodes of the
Reeb graph. For the arcs, we sample some leaves uniformly
within each surface component and use the centroids of
these leaves as the Euclidean positions to form the arcs.

Since the integrated scalar function is discontinuous,
the function values for a surface component may not be
monotonic. Thus, to uniformly sample the leaves, we re-
evaluate the integration in each surface component. For a
disk component, we use the pole within it as the origin and
integrate the foliation; while for the cylinder component, we
first segment it to form a topological disk along a path that
connects its two boundaries, and then use a vertex on the
boundary as the origin and integrate the foliation. In this
way, the function values in each surface component are in
the range [0, fmax], where 0 and fmax are achieved on the
boundaries (pole) of the surface component. On each surface
component, we uniformly sample some values fi within the
interval (0, fmax), trace the leaves corresponding to fi, and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

use the centroids of the leaves to embed this arc. The final
result is demonstrated in Fig. 8(e).

5.5 Analysis

5.5.1 Efficiency

In our paper, the mesh is implemented with a halfedge data
structure. Using our method, most of the running time is
spent on generating the harmonic measured foliation using
[?], [12]. Zhao et al. [?] state that the running time of the
algorithm ranges from a few seconds to a few minutes for
meshes with fewer than 30,000 vertices. The other parts
of our method take much less time than generating the
harmonic foliation. For example, handling the meshes (all
of which have 6869 vertices) in Fig. 15, the average time
for foliation generation and Reeb graph extraction after
foliation generation for a mesh are 210.77 seconds and
0.02 seconds, respectively. This is because except foliation
generation, the other steps of our method are not time-
consuming, as discussed in the following.

• Locating the singularities involves checking all the
mesh vertices and triangles, and requires O(n) time,
where n is the size of the mesh.

• In the cutting phase, the greedy homotopy basis
algorithm runs in O(n log n) time [50], while con-
necting the singularities runs in O(n) time by the
union-find data structure.

• The integration is performed by a breadth-first search
algorithm, so its time complexity is O(n).

• Leaf tracing requires O(l) time to trace one leaf,
where l is the number of triangles this leaf crosses,
which is often much smaller than n in practice. As a
result, it requires O(kl) time to trace all the critical
leaves and segment the mesh along them, where k is
the number of critical leaves of the foliation, and it is
often very small.

• Building the Reeb graph is trivial and requires
O(k + c) time, where c is the number of surface
components.

• For embedding the Reeb graph in R
3, the running

time is O(ml) where m is the number of additional
leaves to trace.

In our current implementation, the algorithm runs on a sin-
gle thread of the CPU. For further boosting the performance
of the algorithm, several steps could be easily parallelized,
including locating the singularities, tracing the leaves, and
building the Reeb graph.

5.5.2 Handling Complex Singularities

For Reeb graph extraction, the critical points of the functions
used with existing methods have similar effects as the
singularities of foliations with our method for detecting the
neighboring relationships between surface components. A
critical point is non-degenerate if the Hessian of the used
function is non-singular at that point. If all the critical points
of a function have distinct function values, they are called
simple. In general, degenerate critical points or non-simple
critical points cannot be produced stably [25], and a fine
tessellation of the mesh is always required for representing
degenerate critical points, e.g., producing a vertex with a

Fig. 13. We can conveniently extract the Reeb graph to represent
the neighboring relationships between more than three surface compo-
nents.

valence of at least six to represent a monkey saddle [31].
Thus, the existing methods generally require the critical
points of the used function to be non-degenerate and simple;
thus, they resort to a Morse function. As discussed in [14],
the non-degenerate and simple critical points of a Morse
function on a surface can only be the maximum, minimum,
and Morse saddles, where the maximum and minimum
correspond to the nodes of valence one, while a Morse sad-
dle corresponds to a branching node of valence three [14].
Thus, the Reeb graph extracted via a Morse function can
only represent the neighboring relationship between three
surface components. This prevents existing methods from
handling complex singularities, such as non-simple and
degenerate saddles, which are related to the neighboring
relationship between more than three surface components.

For handling complex singularities, some methods sug-
gest grouping multiple critical points into critical areas
[1], [32], so that a critical area containing degenerate or
non-simple critical points can represent the neighboring
relationships between more than three surface components.
However, it is nontrivial to decide how to group critical
points into a single critical area, and the resulting Reeb
graph may differ greatly due to different decisions.

Fortunately, such difficulties can be naturally resolved
using our method. As discussed in Section 4.1, the neigh-
boring relationships between surface components are fixed
when the loops are determined to represent surface compo-
nents. This means the surface components correlated to a
saddle leaf are fixed, and the arcs of the surface components
are always connected to the node of the saddle leaf in the
Reeb graph. As illustrated in Fig. 13, a node of the Reeb
graph can have five arcs connected. In our implementation,
our foliation is generated by Whitehead moves, which can
turn a higher-order singularity into two lower-order singu-
larities, while keeping the saddle leaf correlated to the same
surface components. Here, the order of the singularity is
determined by its index, e.g., a first-order saddle (tripod
saddle in Fig. 1) has an index of -1, a second-order saddle
(Morse saddle in Fig. 1) has an index of -2, and so on [?].
Thus, we only require the tessellation of the mesh to be
able to represent first-order saddles, as high-order saddles
can be Whitehead moved into multiple first-order saddles.
This is generally satisfied by most meshes, as a vertex only
needs three adjacent corners to be able to represent the first-
order saddle, according to the equation for computing the
index introduced in Section 3.2. As a result, we enhance the
potential of handling complex singularities without having

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 14. Comparison of conciseness between the extracted Reeb graphs by our method and those by some functions, including the height function
[6], geodesic distance [3], spectral distance [29], Laplace eigenfunction [2], and harmonic function [31]. The functions marked with * mean their
detected critical points are post-processed by the method of [51] to simplify the extracted Reeb graphs. On the 1st and 3rd row, the isolines of
the functions and our foliation leaves are represented in black curves, while the critical points of the functions and singularities of the foliations are
marked in colored spheres. On the 2nd and 4th row, the corresponding extracted Reeb graphs by these methods are illustrated. Clearly, our Reeb
graphs are more concise than the Reeb graphs produced by the compared methods.

a high requirement for tessellation of the mesh.

6 RESULTS AND DISCUSSION

Many methods have been proposed for extracting Reeb
graphs on surfaces. To show our superiority over the exist-
ing methods, we implemented our method and some exem-
plary isoline-based methods for comparison using C++14
and conducted the experiments on a personal computer
installed with a 3.5 GHz 3950X CPU and the ArchLinux
system. Here, we implemented the height function [6],
the geodesic distance to the nearest feature points [3], the
spectral distance to the nearest feature points [29], the first
non-constant eigenfunction of the Laplace-Beltrami operator
[2], and the harmonic function with manually prescribed
Dirichlet boundary conditions [9] for generating isolines.
Since some of these compared methods may generate too
many critical points to extract concise Reeb graphs, we
used a post-process of topological simplification to remove
excessive critical points. With the critical points obtained,
Reeb graphs were extracted. In this paper, we employed
the implementations in TTK (0.9.9) [51] for topological
simplification and Reeb graph extraction. When using the
methods via the geodesic distance, spectral distance, and
harmonic function, the users are required to set some points

as function extrema; thus, we also set these points as our
poles for foliation generation, for fair comparison.

In the experiments, we first compared all these meth-
ods for extracting concise Reeb graphs. Then, regarding
the stable extraction of Reeb graphs, we mainly compared
our method with the harmonic function [9] because it is
free of extra critical points and generally superior to the
other functions. Afterward, we demonstrate some potential
benefits of our Reeb graphs for improving shape analysis.

6.1 Extracting Concise and Stable Reeb Graphs

From the resulting Reeb graphs and the related statistics
about their nodes and arcs for the two tested models in
Fig. 14, it is clear that we can extract more concise Reeb
graphs than the other methods, even if the functions used
to extract the Reeb graphs are simplified. Our Reeb graphs
well represent the significant surface components, while this
is challenging with some existing methods. Note that the
Reeb graph extracted for Pegasus by the method [6] with a
topological simplification misses the left wing in the graph,
due to its over simplification.

To test the stability on extracting Reeb graphs, we per-
formed several tests. First, we tested several human models
in many poses, and compared the results with those of the
harmonic function method [9]. As illustrated in Fig. 15,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 15. Comparison of the extracted Reeb graphs for the similar shapes in different poses with our method (the upper 2 rows) and the harmonic
function [9] (the lower 2 rows). Our method can extract consistent Reeb graphs with that of the reference shape (marked in a black box), while the
harmonic function [9] cannot. Some different Reeb graphs from that for the reference shape are highlighted in blue circles.

Fig. 16. Our algorithm can stably extract Reeb graphs on meshes in
different resolutions (top) and noisy meshes (bottom).

our method can extract the same Reeb graph, while the
results using the method of [9] are inconsistent for these
human models, especially near the hands and the chest.
Second, we tested our method to handle models at different
resolutions or with/without noise. As illustrated in Fig. 16,
our extracted Reeb graphs are consistent. This greatly ben-
efits from foliation leaves being stably generated over the
surfaces. All these results mean that we can robustly extract
Reeb graphs that are superior to those of existing methods.

6.2 Enhanced Potential for Shape Representation

Our method employs loops to capture significant surface
components for Reeb graph extraction. Here, the loops can
be defined intuitively on the surface. Thus, we provide

an easy way for the user to extract the Reeb graph as
desired, by which the structure of the shape can be more
effectively represented, such as more conveniently revealing
the symmetries of the shapes, as well as extracting the
same Reeb graph for the similar shapes by ignoring the
small differences between them, e.g., small holes or small
deformations. This enhances the potential of Reeb graphs
to represent shapes, in comparison with existing methods,
whose potential for representing shapes is limited, as dis-
cussed below.

Suitable shape representation for meeting the requirements
of applications is always needed. However, this is not easy
to achieve with existing methods, as the isolines on the sur-
face are fixed when their used functions are determined, so
the nodes and arcs of their extracted Reeb graphs are fixed.
Thus, for extracting a Reeb graph with desired structure, the
user needs to adjust the function, but this is not easy, as such
adjustment is indirect. When using our method, the user can
conveniently adjust the loops to configure the structure of
the Reeb graph, as demonstrated in Fig. 1(e)(f).

Revealing symmetry is very important for shape analysis.
With our method, the symmetries of the shape can be
easily presented in the Reeb graphs by setting the loops
on the symmetrical parts, as shown in Fig. 17(c), where
we found the tips of the three handles to define three
loops around them. For the existing methods, obtaining
a suitable function for representing the symmetries in the
Reeb graph is not an easy task, as illustrated in Fig. 17(a)(b).
Using the harmonic function, it is difficult to adjust the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

(a) Geodesic (b) Harmonic (c) Ours

Fig. 17. The symmetries of this shape cannot be well represented in the
extracted Reeb graphs using geodesic distance or harmonic function
(a)(b), while this can be easily achieved with our method (c).

Fig. 18. The existing methods extract different Reeb graphs for the two
similar models in (a)(b). But our method can extract similar Reeb graphs
for similar shapes in (c)(d), as we can easily avoid generating loops for
small holes.

boundary conditions to represent the symmetries. Using
the geodesic distance with a topological simplification post-
process, the extracted Reeb graph is complicated and does
not clearly represent the symmetries, due to its sensitiveness
to geometry.

Avoiding topological noise is expected for effective shape
analysis, especially for high-genus surfaces. Theoretically,
the Reeb graph of a Morse function on a closed orientable 2-
manifold of genus g must have g loops in the graph [14]. As
a result, Reeb graphs extracted from scalar functions cannot
avoid any of the holes in meshes, which prevents them from
stably representing meshes that are very similar to each
other except for some trivial topological differences. For ex-
ample, the only differences in the two human models shown
in Fig. 18 are the small holes in them, including the wrinkle
of the cloth in the left model, and the gaps between the shoes
and grounds in the right model. With existing methods,
the Reeb graphs for these two models are very different, as
shown in Fig. 18(a)(b). To solve this problem, Doraiswamy
and Natarajan [19] suggested simplifying the loops in the
Reeb graph based on topological persistence. However, this
simplification is performed after the Reeb graph is extracted,
which does not change the surface components. As a result,
it no longer has a one-to-one mapping between the surface
components and the arcs of the simplified Reeb graph,
preventing shape processing. In contrast, our method can
extract the same Reeb graphs for such meshes to represent
their prominent structures, as we can simply define no loop
for small holes, as shown in Fig. 18(c)(d). In addition, our
surface components are clean and simple, and there is a
one-to-one mapping between the surface components and
arcs of the Reeb graph, which is helpful for tasks like shape
chartification and quadrangulation [8], [9].

If all holes of the mesh are ignored, our method can
produce Reeb graphs in tree structures for high genus
surfaces, as we can generate no loop for holes, as shown
in Fig. 7(a). As we know, existing methods can only pro-

duce Reeb graphs in tree structures on simply connected
domains, called the contour trees [25]. With our method,
the contour trees can be extracted similarly as the existing
methods, as shown in Fig. 8(d).

7 CONCLUSIONS

It is still a challenge for existing methods to extract stable
and concise Reeb graphs, as the isolines of their used
functions defined on the surface cannot suitably represent
the surface components. In this paper, we address this
challenge by using foliation leaves to extract Reeb graphs.
With a method for foliation generation by determining
loops on the surface to initialize the foliation, we develop
a series of measures for extracting Reeb graphs, where
loops are employed to represent the surface components.
We demonstrate that when the homotopy types of the loops
are determined, the surface components are fixed and the
neighboring relationships between them are also fixed, so
that the extracted Reeb graphs are compact and robust.
Moreover, with our method, the potential for shape analysis
by the Reeb graphs is enhanced, including allowing the
user to freely prescribe loops to conveniently adjust the
structure of the Reeb graph according to one’s desire, easily
representing the symmetries of the surface and ignoring
the topological noise, while avoiding the post process of
topological simplification. As a result, we can have Reeb
graphs that more effectively encode the topology of the
surface and are conveniently obtained.

There are some future issues for improving our work.
First, our method relies greatly on foliation generation,
while this is still time-consuming, as discussed in Sec-
tion 5.5. It is noted that a fast foliation generation method
was proposed recently [?]. We will study the integration
of this method and our method soon. Second, using the
automatic loop generation algorithm, different Reeb graphs
may be generated for the same shape when the determined
loops are different, as mentioned in Section 4.2. If the loops
are not suitably generated, the extracted Reeb graph would
not be the one desired. Thus, how to determine loops to
extract suitable Reeb graphs to satisfy the applications’
requirements need to be studied. Third, our currently ex-
tracted Reeb graphs are mainly for reflecting the neigh-
boring relationships between surface components, whose
geometric representation may be in low quality, which may
prevent using these Reeb graphs for some applications, such
as shape segmentation. Therefore, generating Reeb graphs
with surface components with high quality geometric rep-
resentations needs to be studied.

ACKNOWLEDGEMENTS

This work is partially supported by the National Natural
Science Foundation of China under Grant 62072446. The
authors really appreciate the editors and anonymous re-
viewers for their constructive comments and suggestions,
and Prof. Jinsong Liu from Institute of Mathematics, AMSS,
Chinese Academy of Sciences for the insightful discussion
on quadratic differentials. The models used in this paper are
credited to Myles et al. [52], Keenan Crane [53], the Three D
Scans project [54], and the FAUST dataset [55].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

REFERENCES

[1] M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii, ªTopology
matching for fully automatic similarity estimation of 3D shapes,º
in Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, 2001, pp. 203±212.

[2] V. Barra and S. Biasotti, ª3D shape retrieval using kernels on
extended Reeb graphs,º Pattern Recognition, vol. 46, no. 11, pp.
2985±2999, 2013.

[3] J. Tierny, J.-P. Vandeborre, and M. Daoudi, ªEnhancing 3D mesh
topological skeletons with discrete contour constrictions,º The
Visual Computer, vol. 24, no. 3, pp. 155±172, Mar. 2008.

[4] T. K. Dey, F. Fan, and Y. Wang, ªAn efficient computation of handle
and tunnel loops via Reeb graphs,º ACM Transactions on Graphics,
vol. 32, no. 4, pp. 1±10, Jul. 2013.

[5] J. Tierny, J.-P. Vandeborre, and M. Daoudi, ªPartial 3D shape
retrieval by Reeb pattern unfolding,º Computer Graphics Forum,
vol. 28, no. 1, pp. 41±55, 2009.

[6] Y. Shinagawa, T. Kunii, and Y. Kergosien, ªSurface coding based
on Morse theory,º IEEE Computer Graphics and Applications, vol. 11,
no. 5, pp. 66±78, Sep. 1991.

[7] G. Aujay, F. HÂetroy-Wheeler, F. Lazarus, and C. Depraz, ªHar-
monic skeleton for realistic character animation,º Proceedings of
the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 151±160, Aug. 2007.

[8] J. Tierny, J. Daniels II, L. G. Nonato, V. Pascucci, and C. T. Silva,
ªInteractive quadrangulation with Reeb atlases and connectivity
textures,º IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 10, pp. 1650±1663, Oct. 2012.

[9] T. Sorgente, S. Biasotti, M. Livesu, and M. Spagnuolo, ªTopology-
driven shape chartification,º Computer Aided Geometric Design,
vol. 65, pp. 13±28, Oct. 2018.

[10] I. Nikolaev, Foliations on Surfaces, ser. Ergebnisse Der Mathematik
Und Ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in
Mathematics. Berlin Heidelberg: Springer-Verlag, 2001.

[11] K. Strebel, Quadratic Differentials, ser. Ergebnisse Der Mathematik
Und Ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in
Mathematics. Berlin Heidelberg: Springer-Verlag, 1984.

[12] D. R. Palmer, ªToward computing extremal quasiconformal maps
via discrete harmonic measured foliations,º Bachelor’s Thesis,
Harvard College, 2016.

[13] G. Patane, M. Spagnuolo, and B. Falcidieno, ªA minimal con-
touring approach to the computation of the Reeb graph,º IEEE
Transactions on Visualization and Computer Graphics, vol. 15, no. 4,
pp. 583±595, Jul. 2009.

[14] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci, ªLoops in Reeb graphs of 2-manifolds,º Discrete &
Computational Geometry, vol. 32, no. 2, pp. 231±244, Jul. 2004.

[15] C. Wang and J. Tao, ªGraphs in scientific visualization: A survey,º
Computer Graphics Forum, vol. 36, no. 1, pp. 263±287, 2017.

[16] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, ªLoop surgery for
volumetric meshes: Reeb graphs reduced to contour trees,º IEEE
Transactions on Visualization and Computer Graphics, vol. 15, no. 6,
pp. 1177±1184, Nov. 2009.

[17] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, ªRo-
bust on-line computation of Reeb graphs: Simplicity and speed,º
ACM Transactions on Graphics, vol. 26, no. 3, pp. 58±es, Jul. 2007.

[18] W. Harvey, Y. Wang, and R. Wenger, ªA randomized O(m logm)
time algorithm for computing Reeb graphs of arbitrary simplicial
complexes,º in Proceedings of the Twenty-sixth Annual Symposium
on Computational Geometry, ser. SoCG ’10. New York, NY, USA:
Association for Computing Machinery, Jun. 2010, pp. 267±276.

[19] H. Doraiswamy and V. Natarajan, ªOutput-sensitive construction
of Reeb graphs,º IEEE Transactions on Visualization and Computer
Graphics, vol. 18, pp. 146±159, 2011.

[20] S. Parsa, ªA deterministic O(m logm) time algorithm for the Reeb
graph,º Discrete & Computational Geometry, vol. 49, no. 4, pp. 864±
878, 2013.

[21] H. Doraiswamy and V. Natarajan, ªComputing Reeb graphs as
a union of contour trees,º IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 2, pp. 249±262, Feb. 2013.

[22] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci, ªTime-
varying Reeb graphs for continuous space-time data,º in Proceed-
ings of the Twentieth Annual Symposium on Computational Geometry,
2004, pp. 366±372.

[23] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny, ªTask-based aug-
mented Reeb graphs with dynamic ST-trees,º in Eurographics

Symposium on Parallel Graphics and Visualization, Porto, Portugal,
Jun. 2019, pp. 27±37.

[24] M. Hajij and P. Rosen, ªAn efficient data retrieval parallel Reeb
graph algorithm,º Algorithms, vol. 13, no. 10, p. 258, Oct. 2020.

[25] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, ªReeb
graphs for shape analysis and applications,º Theoretical Computer
Science, vol. 392, no. 1-3, pp. 5±22, Feb. 2008.

[26] S. Parsa, ªAlgorithms for the Reeb graph and related concepts,º
Ph.D. dissertation, Duke University, 2014.

[27] Y. Shinagawa and T. L. Kunii, ªConstructing a Reeb graph auto-
matically from cross sections,º IEEE Computer Graphics and Appli-
cations, vol. 11, no. 6, pp. 44±51, Nov. 1991.

[28] G. Patanè and B. Falcidieno, ªComputing smooth approximations
of scalar functions with constraints,º Computers & Graphics, vol. 33,
no. 3, pp. 399±413, Jun. 2009.

[29] R. E. Khoury, J.-P. Vandeborre, and M. Daoudi, ª3D-mesh Reeb
graph computation using commute-time and diffusion distances,º
Proceedings of SPIE - The International Society for Optical Engineering,
vol. 8290, pp. 157±166, Feb. 2012.

[30] M. Hajij, T. Dey, and X. Li, ªSegmenting a surface mesh into pants
using Morse theory,º Graphical Models, vol. 88, pp. 12±21, Nov.
2016.

[31] X. Ni, M. Garland, and J. C. Hart, ªFair Morse functions for
extracting the topological structure of a surface mesh,º ACM
Transactions on Graphics, vol. 23, no. 3, pp. 613±622, 2004.

[32] S. Biasotti, B. Falcidieno, and M. Spagnuolo, ªExtended Reeb
graphs for surface understanding and description,º in Discrete
Geometry for Computer Imagery, ser. Lecture Notes in Computer
Science, G. Borgefors, I. NystrÈom, and G. S. di Baja, Eds. Berlin,
Heidelberg: Springer, 2000, pp. 185±197.

[33] U. Bauer, C. Lange, and M. Wardetzky, ªOptimal topological
simplification of discrete functions on surfaces,º Discrete & Com-
putational Geometry, vol. 47, no. 2, pp. 347±377, Mar. 2012.

[34] J. Tierny and V. Pascucci, ªGeneralized topological simplification
of scalar fields on surfaces,º IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2005±2013, Dec. 2012.

[35] J. Tu, M. Hajij, and P. Rosen, ªPropagate and pair: A single-pass
approach to critical point pairing in Reeb graphs,º in Advances
in Visual Computing, ser. Lecture Notes in Computer Science,
G. Bebis, R. Boyle, B. Parvin, D. Koracin, D. Ushizima, S. Chai,
S. Sueda, X. Lin, A. Lu, D. Thalmann, C. Wang, and P. Xu, Eds.
Cham: Springer International Publishing, 2019, pp. 99±113.

[36] J. Lukasczyk, C. Garth, R. Maciejewski, and J. Tierny, ªLocalized
topological simplification of scalar data,º IEEE Transactions on
Visualization and Computer Graphics, vol. 27, no. 2, pp. 572±582,
2020.

[37] J. Vekhter, J. Zhuo, L. F. G. Fandino, Q. Huang, and E. Vouga,
ªWeaving geodesic foliations,º ACM Transactions on Graphics,
vol. 38, no. 4, pp. 1±22, 2019.

[38] M. Campen, C. T. Silva, and D. Zorin, ªBijective maps from
simplicial foliations,º ACM Transactions on Graphics, vol. 35, no. 4,
pp. 1±15, Jul. 2016.

[39] N. Lei, X. Zheng, J. Jiang, Y.-Y. Lin, and D. X. Gu, ªQuadrilateral
and hexahedral mesh generation based on surface foliation the-
ory,º Computer Methods in Applied Mechanics and Engineering, vol.
316, pp. 758±781, Apr. 2017.

[40] ÐÐ, ªQuadrilateral and hexahedral mesh generation based on
surface foliation theory II,º Computer Methods in Applied Mechanics
and Engineering, vol. 321, pp. 406±426, Apr. 2017.

[41] A. Fathi, F. Laudenbach, and V. PoÂenaru, Thurston’s Work on
Surfaces (MN-48). USA: Princeton University Press, Apr. 2012.

[42] M. Meyer, M. Desbrun, P. SchrÈoder, and A. H. Barr, ªDiscrete
differential-geometry operators for triangulated 2-manifolds,º in
Visualization and Mathematics III. Springer, 2003, pp. 35±57.

[43] J. Sun, M. Ovsjanikov, and L. Guibas, ªA concise and provably
informative multi-scale signature based on heat diffusion,º in
Proceedings of the Symposium on Geometry Processing, vol. 28. Wiley
Online Library, 2009, pp. 1383±1392.

[44] K. Hildebrandt, ªSmooth feature lines on surface meshes,º in Pro-
ceedings of the Third Eurographics Symposium on Geometry Processing,
2005, pp. 85±90.

[45] J. Erickson and K. Whittlesey, ªTransforming curves on surfaces
redux,º in Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2013, pp. 1646±1655.

[46] R. Dyer, H. Zhang, and T. MÈoller, ªDelaunay mesh construction,º
in Proceedings of the Fifth Eurographics Symposium on Geometry

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

Processing, ser. SGP ’07. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007, pp. 273±282.

[47] M. S. Floater, ªMean value coordinates,º Computer Aided Geometric
Design, vol. 20, pp. 19±27, 2003.

[48] M. Wardetzky, S. Mathur, F. KÈalberer, and E. Grinspun, ªDiscrete
Laplace operators: No free lunch,º in Proceedings of the Fifth Euro-
graphics Symposium on Geometry Processing, 2007, pp. 33±37.

[49] B. Springborn, P. SchrÈoder, and U. Pinkall, ªConformal equiva-
lence of triangle meshes,º ACM Transactions on Graphics, pp. 1±11,
2008.

[50] J. Erickson and K. Whittlesey, ªGreedy optimal homotopy and
homology generators,º in Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA ’05. USA:
Society for Industrial and Applied Mathematics, Jan. 2005, pp.
1038±1046.

[51] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux,
ªThe topology toolkit,º IEEE Transactions on Visualization and Com-
puter Graphics, vol. 24, no. 1, pp. 832±842, Jan. 2018.

[52] A. Myles, N. Pietroni, and D. Zorin, ªRobust field-aligned global
parametrization,º ACM Transactions on Graphics, vol. 33, no. 4, pp.
1±14, Jul. 2014.

[53] K. Crane, ªKeenan Crane - 3D model repository,º
http://www.cs.cmu.edu/˜kmcrane/Projects/ModelRepository/.

[54] ªThree D Scans,º https://threedscans.com/.
[55] F. Bogo, J. Romero, M. Loper, and M. J. Black, ªFAUST: Dataset

and evaluation for 3D mesh registration,º in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 3794±
3801.

Shaodong Wang received his B.Sc. degree
from the School of Resource and Environmental
Sciences at Wuhan University. He is currently
a Ph.D. student with the State Key Laboratory
of Computer Science, Institute of Software, Chi-
nese Academy of Science. His research inter-
ests include geometry processing and shape
analysis.

Wencheng Wang is a professor of the State
Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, where
he leads a research group on Computer Graph-
ics and Image Processing. He received his PhD
degree in software from Institute of Software,
Chinese Academy of Sciences in 1998. His re-
search interests include computational geome-
try, computer graphics, visualization, and image
editing. He is a member of the IEEE and the
ACM.

Hui Zhao is a computer graphics scientist. He
was a visiting scholar in Harvard University from
2015 to 2016. He published five books on com-
puter graphics. His research interests include
discrete differential geometry, discrete conformal
geometry, hyperbolic geometry, mesh parame-
terizations, mesh deformations, and mesh quad-
rangulations.

	Introduction
	Related Works
	Reeb Graphs
	Foliation Generation

	Preliminaries
	On Measured Foliations
	Generating Harmonic Measured Foliation on Triangular Meshes

	Using Loops To Capture Surface Components
	Capturing Surface Components and the Neighboring Relationships Between Them
	Loop Determination
	Automatic loop generation
	Generating Loops Concisely

	Algorithm
	Improved Foliation Generation
	Extracting Critical Leaves and Surface Components
	Locating Singularities
	Mesh Cutting
	Foliation Integration
	Tracing Leaves
	Extracting Surface Components

	Reeb Graph Extraction
	Embedding Reeb Graph in R3
	Analysis
	Efficiency
	Handling Complex Singularities

	Results and Discussion
	Extracting Concise and Stable Reeb Graphs
	Enhanced Potential for Shape Representation

	Conclusions
	References
	Biographies
	Shaodong Wang
	Wencheng Wang
	Hui Zhao

