
Computers & Graphics (2021)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

A multigrid approach for generating harmonic measured foliations

Shaodong Wanga,b,∗, Shuai Maa,b, Hui Zhaoa,b, Wencheng Wanga,b,∗∗

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
bUniversity of Chinese Academy of Sciences

A R T I C L E I N F O

Article history:

Keywords: Geometry Processing, Har-
monic Measured Foliation, Multigrid
Solver

A B S T R A C T

Harmonic measured foliation has demonstrated its usefulness for many geometric prob-
lems, including conformal parameterization and mesh quadrangulation. Due to the
non-linearity and hard constraints for its computation, existing iterative solvers con-
verge very slowly, and so impractical for large meshes. Though the multigrid approach
is well-known for speeding up iterative solvers, a general multigrid solver cannot be
applied here in a plug-and-play fashion, because the constraints for computing the har-
monic measured foliations would be broken. In this article, we design a novel multigrid
solver for this problem, where we propose specific multi-resolution mesh hierarchies
and interpolation schemes to fulfill the requirements of the harmonic measured folia-
tion. Experimental results show that our multigrid solver converges much faster than the
original algorithm on meshes ranging from a few thousands to over one million edges,
even by over a hundred times. This would benefit scalable geometry processing using
harmonic measured foliations.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The foliation is a geometric structure which decomposes
a manifold into lower-dimensional submanifolds called its
leaves. Due to its structural properties, the foliation has drawn
growing attentions in geometry processing and shape analysis
in recent years, including surface mapping [1], volume mapping
[2], and computational fabrication [3].

Based on the profound theoretical relationship with com-
plex analytic functions, a special class of foliation, called the
harmonic measured foliation, can be used to compute global
conformal parameterizations of surfaces, which is very use-
ful for conformal texture mappings [4], generating quadrilat-
eral meshes with regular structures [5], and computing corre-

∗Corresponding author.
∗∗Corresponding author.

This is the author’s version. Published version at: https://www.

sciencedirect.com/science/article/pii/S0097849321002144

e-mail: wangsd@ios.ac.cn (Shaodong Wang), whn@ios.ac.cn
(Wencheng Wang)

spondence between surfaces [6]. To this end, various methods
[7, 4, 5] have been proposed to compute the harmonic mea-
sured foliation on surfaces. Among them, the method proposed
by Palmer [7] is very effective by representing the discrete mea-
sured foliations of meshes as an edge-valued function, similar
to a discrete 1-form [8], as the measured foliation is related to
differential 1-form. Afterwards, the method is further improved
in [4], and it has the advantage of representing the conformal
parameterization without changing the connectivity of the orig-
inal mesh like the comparative method [5]. Unfortunately, due
to the non-linear nature of the problem for generating harmonic
measured foliations, the methods [7, 4] can only be solved in an
iterative fashion and cannot scale well to large meshes.

Motivated by the effectiveness of the multigrid approach in
accelerating iterative solvers, we propose a novel method to
improve the efficiency of [7, 4]. The basic idea for the multi-
grid approach is to solve the original problem on a hierarchy of
coarse-to-fine grids. For this, the simplest paradigm, called the
cascadic multigrid, is to first solve the problem on the coars-
est grid, and then interpolate the results of the coarser grids

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
https://www.sciencedirect.com/science/article/pii/S0097849321002144
https://www.sciencedirect.com/science/article/pii/S0097849321002144


2 Preprint Submitted for review /Computers & Graphics (2021)

iteratively to the finer grids (called prolongation) to speed up
convergence. Thus, the core to the multigrid method is to prop-
erly construct a multigrid hierarchy and interpolate the func-
tion values between different levels of the hierarchy. In com-
puter graphics, existing multigrid methods for triangular sur-
face meshes [9, 10, 11] mainly construct the multigrid hierar-
chy by mesh simplification using edge collapsing, and interpo-
late the values using some locally-weighted-average measures.
However, the existing multigrid methods cannot be used to gen-
erate harmonic measured foliations, as discussed below.

• First, these methods all focus on solving linear systems
for scalar functions defined on mesh vertices, while the
variables of harmonic measured foliations are defined on
mesh edges.

• Second, the optimization of harmonic measured foliation
must satisfy several hard constraints, which are strictly
preserved by the iteration proposed in [7] (to be discussed
in details in Section 3). However, when interpolating the
values of the coarser grids to the finer grids in the multi-
grid approach, simply mimicking existing strategies, such
as one-ring averaging, will invalidate the constraints and
make the foliation incorrect at the next level.

• Third, the algorithm [7, 4] only guarantees to converge on
Delaunay meshes due to its use of cotangent weights, but
edge collapsing will break the Delaunay property of the
input mesh, which may lead the algorithm to not converge
on coarser grids.

Therefore, it is vital to carefully design the multigrid hierar-
chy as well as the interpolation strategy for correctly computing
the harmonic measured foliation with the multigrid method. In
this article, we propose a novel cascadic multigrid method for
generating harmonic measured foliations [7, 4], consisting of
two key ingredients. First, we build the multigrid hierarchy by
performing the edge flipping algorithm [12] at each level after
edge collapsing, for obtaining a Delaunay mesh at each level.
Second, we present a set of constraint-preserving interpolation
measures to correctly prolong the foliation values from coarser
grids to finer grids, with respect to both edge collapsing and
edge flipping. With extensive experiments, we demonstrate that
our algorithm can achieve an acceleration of several orders of
magnitudes on large meshes, as shown in the example Fig. 1.
As a result, our method makes the harmonic measured foliation
much more scalable to large meshes, which are always required
in applications.

2. Related work

2.1. Discrete foliations
Foliations arise in many fields of mathematics including dy-

namic systems and complex analysis. Below we focus on dis-
crete foliations in geometry processing, especially the discrete
harmonic measured foliations.

As mentioned in Section 1, the foliation on a manifold de-
composes it into lower dimensional submanifolds (its leaves).
In computer graphics, most works study 2D (surfaces) and 3D

Fig. 1. Comparing our method with the original algorithm [7, 4]. On the
first row, both methods generate similar results, but our multigrid solver
converges much faster than the original algorithm. On the second row, our
approach produces a harmonic foliation in less than 10 seconds, but the
original algorithm is far from convergence even after 10 minutes. In this
article, the foliation is visualized as red-white stripes following the method
in [4], and the colored spheres and triangles illustrate the singularities.

(volumes) manifolds, so the leaves are often 1D curves or 2D
surfaces. Till now, many works have been done for facilitat-
ing many tasks., e.g., computing the one-dimensional simpli-
cial foliations to build bijective maps between surfaces and vol-
umes [1], using the two-dimensional generalized foliations to
build maps between volume meshes [2], and computing the
geodesic foliations on surfaces for benefiting the design of
weaving structures [3].

To our knowledge, the measured foliation has received much
attention as it has many rich structures [13] and equivalent to the
horizontal trajectories of a holomorphic quadratic differential
[14], by which the measured foliations can be used to compute
conformal parameterizations on high-genus meshes, since the
holomorphic quadratic differential is equivalent to a conformal
flat metric with cones. There are two major lines of algorithms
to compute harmonic measured foliations on surface meshes, as
discussed below.

Lei et al. [15, 16, 5] propose to compute a harmonic map
between the cylinder graph of the surface to the surface itself
using the non-linear heat flow algorithm [17]. Then the surface
is segmented into several cylinders, and the harmonic measured
foliation is treated as harmonic functions in each cylinder. This
algorithm has been applied to compute quadrilateral and hex-
ahedral meshes [15, 16, 5] as well as surface correspondence
[6]. But this algorithm has its downside that the mesh has to
be sliced into cylinders so that its original connectivity may be
changed.

Besides the algorithms mentioned in the above paragraph,
Palmer [7] proposes to directly represent the discrete measured
foliations as scalar values defined on mesh edges, and develops
an algorithm for generating harmonic measured foliations. This
is based on the definition of the measured foliation [13], stating
that the measured foliation is locally equivalent to a differen-
tial 1-form. However, the discrete harmonic measured foliation
cannot be computed efficiently with a linear system like the 1-
forms [18]. Instead, Palmer [7] formulates the problem as a
non-linear optimization and proposes an iterative algorithm to
optimize it. First, an initial foliation is prescribed by a set of
disjoint, non-trivial, and non-freely-homotopic triangle loops,



Preprint Submitted for review /Computers & Graphics (2021) 3

where the common edges between consecutive triangles of a
loop are assigned values. Then, the values on the one-ring
edges of a vertex are updated by a so-called discrete Whitehead
move, such that the energy is minimized while maintaining the
constraints of the measured foliation. This algorithm is further
improved by Zhao et al. [4] for its robustness by constraining
the order of vertex traversal to avoid creating extra singulari-
ties. Since the triangle loops generally cover a very small por-
tion of the whole mesh, it would take a long time to obtain the
harmonic measured foliation over the mesh. With the mesh be-
coming larger, the convergence of this algorithm will become
much slower. So this algorithm does not scale well to large
meshes which are commonly seen in real world applications.
In this article, we try to speed up the computation of [7, 4] for
well handling large meshes.

2.2. Multigrid methods

The multigrid approach does not refer to a single numeri-
cal method, but a whole spectrum of techniques based on the
multi-resolution strategy. In the following, we mainly discuss
the design and application of multigrid methods in computer
graphics, based on the domains of their grids, including the ge-
ometric multigrid (structured and unstructured) and algebraic
multigrid. For a more comprehensive understanding, we refer
readers to the book [19].

Structured grids like pixels and voxels are the simplest do-
mains. They admit a natural multigrid hierarchy thanks to the
consistent local neighborhoods, and the values are often inter-
polated simply by bilinear or trilinear interpolations. They have
been widely applied to efficient image processing [20], fluid
simulation [21, 22], and surface reconstruction [23, 24, 25].
However, these grids are too simple to represent complex do-
mains like surfaces.

Unstructured grids like triangular and tetrahedral meshes are
often used to represent more complex shapes. For Euclidean
domains like planar surfaces [26] and volumes [27], it is com-
mon to first fix the boundary mesh elements for each level, and
then triangulate the interior. Then the function values are gen-
erally interpolated using barycentric coordinates. For curved
surfaces, which is also the main focus of this paper, the multi-
grid hierarchy is often built by mesh simplification using edge
collapsing [28]. However, since the simplified mesh no longer
lies on the same surface as the finer mesh, simple barycen-
tric interpolation [9, 29] or one-ring averaging [10] may induce
very large errors. Recently, Liu et al. [11] propose an intrin-
sic multigrid method to jointly parameterize the local neighbor-
hood before and after an edge collapsing operation to a common
domain, by which the values can be interpolated with respect
to the intrinsic geometry, so the iterations can converge much
faster. But these methods cannot be applied to compute the har-
monic measured foliation, as discussed in Section 1.

On the other hand, there are algebraic multigrid methods that
build the hierarchy by exploring the sparsity of the matrix in
the linear system, and saving the necessity of dealing with the
actual geometric grids like the above methods. This has the ad-
vantage of totally avoiding the complexity of the unstructured
multigrid methods, and has been applied in shape deformation

3 3

6

1 1

5

4

3

5

1

3

2

2 1 2

3

1

3

2 2

3

6

4 2

4 2

3

5

2

1

53

5 8

44

5

1

1
4

1

5 1

6

2

(d) regular vertex (e) zero vertex (f) pole vertex

(a) regular face (b) zero face (c) pole face

Fig. 2. Illustration of the discrete measured foliations and related struc-
tures. The leaves of the foliation are illustrated by green curves. The num-
bers on the edges show the possible foliation values. The closed corners are
marked by⃝, and non-closed corners by ×. Colored edges in (d-f) are used
to indicate different sectors. (This figure is taken from [4](Fig. 2).)

[30] and cloth simulation [31]. However, existing algebraic
multigrid methods also cannot be directly applied to generate
the harmonic measured foliations, because it is not clear how to
maintain the constraints during the interpolation in the algebraic
multigrid methods.

3. Discrete harmonic measured foliations

For the sake of self-completeness, we review the key results
of [7, 4], which paves the way to our multigrid method.

3.1. Notations

In this paper, we represent a closed manifold surface M as
a triangular mesh M = (V, E,T ), where V , E, T are the set of
vertices, edges, and triangles of the mesh. A vertex is denoted
as vi ∈ V; An edge between vi and v j is denoted as ei j ∈ E;
A triangle formed by vi, v j, vk is denoted as ti jk ∈ T ; A corner
between ei j and e jk in ti jk is denoted as ∠i jk.

3.2. Definitions

Basic definitions. The discrete measured foliation is defined as
a map F : E → R≥0 [7], where a non-negative scalar value is
assigned to each edge of the mesh, called the foliation value Fi j

on edge ei j, as illustrated in Fig. 2. The foliation value repre-
sents the path integral of the smooth foliation on this edge by
analogy with the discrete differential 1-form. A discrete mea-
sured foliation is harmonic if it is both closed and coclosed [7],
as discussed below.
Closedness. In [7], the foliation is required to be closed, mean-
ing that it is locally integrable. As studied in [7], the foliation
can be regular or singular at a face or vertex, and a singularity
can be further classified as a zero or a pole, as shown in Fig. 2.
A foliation is closed if it does not contain poles [7]. The ze-
ros and poles of the foliation can be determined on faces and
vertices as explained below.

A corner ∠i jk is said to be closed for a triangle ti jk if
Fi j + F jk = Fki, and marked with a ⃝ symbol as shown in



4 Preprint Submitted for review /Computers & Graphics (2021)

Fig. 2, otherwise it is not closed and marked with a × symbol
[7]. The index it(F) is used to indicate whether a triangle con-
tains a singularity, which is computed as,

it(F) = 2 − X(t) − Z(t) (1)

where X(t) denotes the number of non-closed corners in t and
Z(t) denotes the number of edges having zero foliation values
in t [7]. If it(F) = 0, then the foliation is regular in that face,
as shown in Fig. 2(a), otherwise it contains a singularity. If the
following triangle inequalities hold,

Fi j < F jk + Fki, F jk < Fki + Fi j, Fki < Fi j + F jk (2)

then the triangle contains a zero of the foliation, as shown in
Fig. 2(b). And if not, the face contains a pole of the foliation,
as shown in Fig. 2(c). In a harmonic foliation, poles are not
permitted.

Similarly, the index of the foliation on a vertex iv(F) is com-
puted as

iv(F) = 2 − O(v) + Z(v) (3)

where O(v) denotes the number of closed corners around v, and
Z(v) denotes the number of one-ring edges having zero foliation
values around v [7]. According to iv(F) = 0, < 0, > 0, the
vertex v can be determined as a regular point, zero, or pole of
the foliation, as shown in Fig. 2(d-f).
Coclosedness. In [7], the one-ring edges Ev around a vertex v
are separated into different sectors by the closed corners adja-
cent to v, illustrated by different colors in Fig. 2(d-f). Let us
denote the k-th sector of vertex v as S k

v, then the foliation is said
to be coclosed at v if Eq. (4) holds for each sector S k

v,∑
ei j∈S k

v

αi jFi j ≤
1
2

∑
ei j∈Ev

αi jFi j (4)

where α is cotangent weight [32] of the mesh. The foliation is
said to be coclosed if it is coclosed on all vertices.

3.3. Algorithm
Based on the definition of harmonic measured foliation stated

in the last subsection, Palmer [7] proposes to iteratively opti-
mize an initial closed foliation to be coclosed in order to gener-
ate a harmonic measured foliation. Particularly, their algorithm
can maintain the Whitehead class [13] of the foliation, which
ensures that the algorithm always converges to the same result
given compatible inputs (detailed below). Its workflow is illus-
trated in Fig. 3.
Initialization. The initialization to the algorithm is a closed
foliation. It is initialized by a set of disjoint, non-trivial, and
non-freely-homotopic triangle loops L = {li}. For each loop
li ∈ L, the same value wi is assigned to the common edges
between consecutive triangles in li as their foliation values. For
the other edges, their foliation values are all zeros. As a result,
we obtain a closed foliation whose leaves are contained within
the input loops, as shown in Fig. 3(a). According to [4], these
loops can be easily drawn by a user interactively, or computed
using non-trivial loops on surfaces such as the homology basis
[33, 34].

(a) (b) (c)

Fig. 3. The framework of algorithm [7]. (a) An input loop is used to ini-
tialize a closed foliation. (b) With a discrete Whitehead move, the foliation
values around a vertex is updated for the foliation to be locally harmonic
here. (c) After enough iterations, a harmonic measured foliation that is
Whitehead equivalent to the initial foliation is generated.

Optimization. This is for generating the measured foliations
on the mesh by the initialization in loops. This problem is for-
mulated as minimizing the Dirichlet energy of the foliation [7],

D(F) =
∑
ei j∈E

αi jF2
i j (5)

whose minimizer realizes the coclosed condition. In order to
maintain the Whitehead class of the foliation, Palmer [7] pro-
poses to use a particular line search direction to minimize the
energy, called a Whitehead move. In a Whitehead move, the fo-
liation values on Ev for a vertex v are updated by subtracting a
value µ from the foliation values of edges in a selected sector of
v, and adding µ to the foliation values of edges in its other sec-
tors, as shown in Fig. 3(b). Here, the selected sector should have
its Dirichlet energy larger than the summed Dirichlet energy of
other sectors, and µ is computed by the weighted difference be-
tween these two Dirichlet energies. For the details, please refer
to [7]. With the Whitehead moves applied iteratively, the algo-
rithm will converge to achieve a harmonic measured foliation,
as shown Fig. 3(c).

This algorithm requires two conditions: α is positive on all
edges, and no poles are created during the optimization [7]. The
first condition can be satisfied by remeshing the input mesh to
be Delaunay using algorithms like [12]. But the second con-
dition is not always fulfilled by [7], which is solved in [4] by
restricting the order of vertex traversal in the optimization to
totally avoid creating poles in the process. In this article, we
use the improved algorithm of [4] for generating harmonic mea-
sured foliations.

4. The cascadic multigrid solver

Here, we introduce our multigrid solver for generating har-
monic measured foliations. Among the solving schemes like
the V-cycle and F-cycle [19], we choose the simple scheme
called the cascadic multigrid (CMG) method. In the CMG
method, a solution is first computed on the coarsest level, and
then the solution of a coarser level is iteratively taken as the
initialization for the next finer level by interpolation to achieve
the solution on that level, until the final solution is obtained on
the finest level. The CMG solver is simple to implement, since
it only involves interpolation from the coarser grid to the finer
grid, and the optimization is solved at each level only once.
Besides, the CMG method is efficient when the coarser grid so-
lution provides a good approximation to the finer grid solution



Preprint Submitted for review /Computers & Graphics (2021) 5

Fig. 4. The workflow of our method. First, we construct a multigrid hierar-
chy by simplifying the original mesh hierarchically. Then, we use triangle
loops on the coarsest mesh to initialize the foliation. After that, we repeat-
edly run the algorithm [7, 4] in each level and interpolate the foliation of
the coarser level to initialize the foliation of the next finer level, until we get
the harmonic foliation on the original mesh.

[9]. As discussed in the following, our interpolation scheme
only changes the foliation values locally, so that the coarser
grid solution would be close to the real solution in the finer
grid, meaning the CMG scheme is suitable for our use.

The overall workflow of our method is illustrated in Fig. 4.
First, we build a hierarchy of multi-resolution meshes. After
that, we generate the foliation on the coarsest mesh by initial-
ization in loops and optimization by the Whitehead moves of
[7, 4]. With the generated foliation on the coarsest mesh, the
CMG method is used to generate foliations on the finer levels
until the harmonic foliation is obtained on the original mesh.
Here, the foliation on a finer level is initialized by the foliation
on the previous coarser level by interpolation, and optimized by
Whitehead moves of [7, 4].

As mentioned in Section 1, there are two challenges we need
to address. First, the algorithm [7, 4] only guarantees to con-
verge on Delaunay meshes, but simplifying a mesh using edge
collapsing may result in a non-Delaunay mesh. Thus, we need
to build a hierarchy of Delaunay meshes (Section 4.1). Sec-
ond, simple interpolation strategies like barycentric interpola-
tion may break the closedness condition of the foliation and
alter its Whitehead class. For this, we need to design special-
ized interpolation measures to maintain all the properties of the
initial foliation (Section 4.2).

4.1. Constructing Delaunay multigrid hierarchy

Our multigrid hierarchy is constructed by alternating mesh
simplification and Delaunay remeshing at each multigrid level,
as demonstrated in Fig. 5. First, the finer grid is coarsened with
some iterations of edge collapsing operations. Then, the simpli-
fied mesh is remeshed to be Delaunay using the edge flipping
algorithm [12]. The sequence of collapsing and flipping oper-
ations are recorded, so that we can simply recover the original

Edge Collapse

Vertex Split

Edge Flip

Edge Flip

Fig. 5. Our multigrid hierarchy is built by a series of edge collapsing and
edge flipping operations. The edge under operation is marked in red, and
the region affected by the operation is marked in blue. These operations
are recorded in the solver, and are rewound during interpolation to return
from the coarse mesh to the original mesh.

(a) Midpoint (0) (b) Endpoint (3) (c) QSLIM (3)

Fig. 6. Different simplification strategies lead to different results. (a) Col-
lapsing the shortest edge and place the new vertex at the midpoint of the
edge. (b) Collapsing the shortest edge and place the new vertex at the end-
point of the edge. (c) Collapsing based on the QSLIM algorithm [35]. The
numbers in the parentheses represent the numbers of additional poles gen-
erated, which should be avoided.

mesh by applying edge flipping and vertex splitting in the re-
verse order.

4.1.1. Edge collapsing
When doing mesh simplification, we need to choose the edge

collapsing strategy, the number of levels, and the number of
edges to reduce in each level.

The edge collapsing strategy refers to deciding which edge
to collapse and where to place the remaining vertex after the
collapse. The simplest way is by collapsing the shortest edge
and placing the vertex at the midpoint or endpoint of the edge.
Besides, there are also more sophisticated strategies that can
preserve the shape of the surface better like the QSLIM method
[35]. As shown in Fig. 6, the midpoint strategy tends to generate
the most uniform meshes, while the other two strategies often
create non-uniform meshes, which are more likely to cause un-
wanted poles. As a result, we use the midpoint strategy in this
paper.

For the number of multigrid levels, it generally should not
be set too big or too small, as shown in the example in Fig. 7.
When creating too many levels, the mesh in the coarsest level
will become too coarse. Although running the optimization on
a coarser mesh is faster than on a finer mesh, it requires more
time for interpolation and reconstructing the hierarchy, which
would offset the time saved in optimization. On the other hand,
if we only construct a few levels for a high-resolution mesh,
then the mesh in the last level is still very large, and so requiring
much more time for the optimization to converge. In general,



6 Preprint Submitted for review /Computers & Graphics (2021)

Fig. 7. Testing the performance of our method with different multigrid
levels. In each case, we show the statistics of the mesh in the coarsest level.

the number of levels for achieving high efficiency is much re-
lated to the size of the mesh, so that we do not fix the number of
levels in simplification. By our experiences, when the number
of vertices of the coarsest mesh is roughly 1k (lowered down
for very small meshes), the obtained number of levels is a good
choice.

Lastly, it is also important to decide how many edges to col-
lapse between neighboring levels in the multigrid hierarchy. As
studied in previous works, the coarser mesh is often set to be
proportional to the size in the previous level [9, 11], or con-
structed by removing the maximal independent set of the mesh
[10]. In this paper, we also use a fixed ratio between two levels.
By the experiments in Section 5, we set the number of edges
in the coarser level to be 50% of the finer level, which tends to
perform the best.

4.1.2. Edge flipping

X

We remesh the simplified
mesh in each multigrid level
to be Delaunay using the edge
flipping algorithm proposed in
[12], which greedily flips the
edges that are not locally Delaunay (NLD). Unfortunately, as
shown in the inset, some edges are topologically non-flippable
since they will create overlapping faces. So strictly speak-
ing, meshes in our multigrid hierarchy are nearly Delaunay and
could contain a few NLD edges. Notice that Dyer et al. [12]
also propose a geometry-preserving Delaunay remeshing algo-
rithm which can handle the topologically non-flippable cases.
However, as this algorithm involves vertex splitting and will
potentially add a lot of vertices to the mesh, it is not suitable for
coarsening. Fortunately, as we will discuss in Section 5, the op-
timization may also converge even there are some NLD edges
(Table 2).

4.2. Whitehead-class-preserving interpolation

For a multigrid solver, the solution it produces should con-
verge to the real solution computed directly on the original
mesh. As introduced in Section 3, this means that as long as
the input loops to the multigrid solver L and input loops to
the original mesh L′ have the same homotopy types as well as
the same associated foliation values, then the initial foliations
should converge to the same harmonic measured foliation in the
same Whitehead class.

Accordingly, when interpolating the foliation on the coarser
mesh to the finer mesh, we need to ensure that the Whitehead
class of the foliation is not changed. As discussed in [7], two
measured foliations are Whitehead equivalent if the path inte-
grals along every class of homotopic curves on the surface are
the same. This is equivalent to requiring that no poles are gen-
erated on the locally modified vertices and faces, as shown in
Fig. 5. Since a foliation without poles is closed, the path inte-
grals for homotopic curves are the same no matter whether the
curve crosses the modified region or not due to the closedness.
As a result, as long as the flipping and collapsing do not create
poles, they will not affect the path integrals along any curve,
and so the Whitehead class of the foliation is preserved. In the
following, we will discuss how to interpolate the foliation when
reverting the edge flipping and collapsing without poles intro-
duced.

4.2.1. Whitehead perturbation
As discussed in Section 3, edges with zero foliation values

will affect the corner closedness as well as the indices of ver-
tices and faces. To simplify the discussion, we first perturb the
foliation to eliminate such edges before interpolation.

Specifically, for an edge ei j whose foliation value Fi j = 0,
we conduct a Whitehead move at vi or v j, as shown in Fig. 8.
Here, a small value ϵ is subtracted from an arbitrary sector S
(red sector in this example) not containing ei j, and added to the
other edges. For preserving the properties of the foliation, the
value ϵ should satisfy the following two conditions. First, when
subtracting ϵ, the foliation values should remain positive, so
ϵ < Fi j for ei j ∈ S . Second, when adding ϵ to the other edges,
we need to ensure that no pole faces are created (cf. Eq. (2)), so
ϵ < (Fi j + Fki − F jk)/2 for ei j, e jk, eki ∈ ti jk and ei j, eki ∈ E \ S .
As a result, we simply set ϵ to be half of the upper bound as
computed above in our experiments.

Note that when vi or v j is a zero of the foliation, the White-
head perturbation can move the zero from the vertex to an inci-
dent triangle, which does not affect the following computation.

Fig. 8. Locally perturb the foliation by conducting a discrete Whitehead
move around the vertex to eliminate edges whose values are zeros.



Preprint Submitted for review /Computers & Graphics (2021) 7

Before:

After:

Before:

After:

Before:

After:

Before:

After:

Case 1 (Variants x 2)

Before: After: Before: After:

Case 2 (Variants x 4) Case 3 (Variants x 2)

Case 4 (Variants x 2) Case 5 (Variants x 4) Case 6 (Variants x 4)

Fig. 9. The interpolation measures to revert an edge flipping when switching to the finer level in the multigrid hierarchy. They are classified into six cases
based on the closedness of the corners in the two related triangles. Please refer to the text for details.

4.2.2. Interpolation for edge flipping
When reverting an edge flip, we only need to determine the

foliation value for the flipped edge, e.g. Fkl for ekl in Fig. 9. The
key idea for setting Fkl is to make the number of closed corners
around all vertices O(v) and non-closed corners around all faces
X(t) unchanged. Then according to Eqs. (1) to (3), the indices
for all the vertices and faces will remain the same and no poles
are introduced.

The specific interpolation measures are classified into six
cases based on the configuration of the closedness on the cor-
ners. There are several variants for each case due to symmetry,
and we only demonstrate one variant for each case in Fig. 9, and
discuss the other variants in the text. Case 1-4 describe the sit-
uations where the two incident triangles are regular, while case
5-6 describe the situations where one incident triangle is regu-
lar and the other is zero. As for the case where both incident
triangles are zeros, we conduct a Whitehead perturbation on vk

or vl to move one of the zero from the face to the vertex, making
it into case 5 or 6. Now, we discuss these cases respectively.

Case 1. For regular triangles, one of its three corners is
closed, and the other two are not. In this case, the two op-
posite corners of ei j are closed. After flipping, Fkl is set as
in Fig. 9 such that the corners ∠ikl,∠ jlk are closed, so that
O(v) and X(t) are not changed, which ensures no poles are
created as mentioned above. There is another variant for this
case when the closed corners after flipping are ∠kli,∠lk j, then
Fkl = Fik − Fli = F jl − Fk j. Here, which variant to be used
depends on the relative values of Fli, Fik and Fk j, F jl.

Case 2. In this case, one closed corner is opposite to ei j,
and the other closed corner is adjacent to ei j. There are in total
four variants for this case considering symmetry, namely (1)
∠ik j,∠i jl; (2) ∠ik j,∠li j; (3) ∠ jli,∠k ji; (4) ∠ jli,∠ jik. For
variant (1) and (3) we have Fkl = Fk j + F jl as shown in Fig. 9,
while for (2) and (4) we have Fkl = Fli + Fik.

Case 3. In this case, the two closed corners are both adjacent
to ei j, but not incident to the same vertex. So they can either
be (1) ∠ jik,∠i jl; or (2) ∠k ji,∠li j. Here Fkl for both cases
are the same as listed in Fig. 9, since they result in the same
configuration after the flip.

Case 4. In this case, the two closed corners are both adjacent
to ei j and incident to the same vertex. As we can see, there is no
way to keep O(v) and X(t) unchanged after the flipping, so the
indices for the vertices and faces have to change. For the variant

shown in Fig. 9, we set Fkl = Fli + Fik. We can easily verify
that tk jl satisfies the triangle inequalities (Eq. (2)) as follows,

Proof.

Fk j + F jl = Fk j + Fi j + Fli

= Fk j + Fi j + Fkl − Fik

= 2Fk j + Fkl

> Fkl

F jl + Flk = F jl + Fli + Fik

= Fli + Fi j + Fli + Fik

= 2Fli + Fk j

> Fk j

Flk + Fk j = Fli + Fik + Fi j + Fik

= 2Fik + F jl

> F jl

As a result, ti jk becomes a zero face. Meanwhile, O(vi) is re-
duced by 1, which in turn causes the index of vi to increase by
1 (Eq. (3)). Thus, if vi is a zero before flipping, it will become
a zero with a smaller index or a regular vertex after flipping,
which is acceptable. But when vi is regular, it will become
a pole after flipping, which could be problematic. However,
this situation rarely happens in practice, because closed corners
tends to distribute uniformly around a vertex. If it does happen,
vi is often not coclosed because one sector of vi contains much
more edges than its other sectors (Eq. (4)). So this issue can
often be fixed by running a few iterations of the optimization,
by which the corner structure changes to another case that is
acceptable. Unfortunately, this is not guaranteed, and the in-
terpolation may create a pair of pole and zero locally. More
experimental results for this case can be found in Section 5 (Ta-
ble 2).

Case 5. In this case, one of the triangle is zero, and the closed
corner in the regular triangle is adjacent to the flipping edge ei j.
For the variant shown in Fig. 9, the zero face moves from tik j to
tk jl, which can be verified similar to case 4. With regard to the
indices of the other vertices and faces, they remain the same. In
this case, there are four variants based on which corner adjacent



8 Preprint Submitted for review /Computers & Graphics (2021)

Perturbation

Case 1 

Perturbation

Case 2 

Fig. 10. The interpolation measures to revert an edge collapsing when
switching to the finer level in the multigrid hierarchy. They are classified
into two cases based on the closedness of the corners in the related trian-
gles. Please refer to the text for details.

to ei j is closed, where Fi j can be naturally deduced from the
closed corner.

Case 6. This case is similar to case 5, except that the closed
corner is opposite to ei j. There are also four variants to this case
based on which corner adjacent to ekl is closed after the flipping,
where Fi j can be naturally deduced from the closed corner.

4.2.3. Interpolation for edge collapsing
A vertex splitting is the opposite operation to an edge col-

lapsing. As demonstrated in Fig. 10, after splitting the ver-
tex vi, one vertex (v j), three edges (ei j, e jk, el j), and two faces
(ti jk, til j) are created. We need to set the foliation values for
the three edges such that no poles are created. Here, we let
Fi j = 0, F jk = Fki, Fl j = Fil. Then we do a Whitehead per-
turbation, as introduced in Section 4.2.1, to eliminate the zero
foliation value for Fi j. Based on the configuration of the closed
corners, there are two cases, as detailed below.

Case 1. In this case, both sides (identified as ccw circulation
around vi from vl to vk and then from vk to vl) contain at least
one closed corner before the splitting. Thus, neither vi nor v j

will become a pole after the splitting and interpolation. Then,
we can arbitrarily select vi or v j to conduct a Whitehead pertur-
bation to make Fi j > 0, as shown in Fig. 10(a).

Case 2. In this case, one side (identified as ccw circulation
around vi from vl to vk and then from vk to vl) does not contain
any closed corner before the splitting. As a result, the index for
vi and v j will change after the splitting, by which one vertex
may be turned into a zero and the other into a pole. Here, we
conduct a Whitehead perturbation on the pole vertex so that the
pole and zero can cancel each other out, as shown in Fig. 10(b).

5. Experiments and analysis

We evaluated our algorithm in various aspects, and compared
it to the original algorithm [7, 4]. In this paper, we imple-
mented all the algorithms in C++17, and compiled using the
gcc-11 compiler with the -O3 flag. All the experiments were

conducted on a personal computer running the ArchLinux sys-
tem with AMD 3950X 3.5GHz CPU and 64GB RAM, and the
convergence threshold is set to be 10−6.
Comparison with the original method [7, 4]. We tested the
performance of our method on different meshes of different res-
olutions. The statistics are summarized in Table 1, and the re-
sulting harmonic foliations are illustrated in Fig. 11. In this
test, we use handle loops generated with [34] and set all asso-
ciated weights uniformly to 1. For our method, we varied the
simplification ratio for edges between consecutive levels in the
hierarchy to be 25%, 50%, and 75% respectively.

As shown in Table 1, our multigrid method greatly improves
the efficiency in all cases. The larger the mesh becomes, the
more speed-up our method can achieve. This is because on
large meshes, the input loops will only cover a very small por-
tion of the mesh, so that only a few edges are armed with the
initial values and the rest are all zeros. Thus, it will take a very
long time to optimize this foliation to be harmonic. As listed
in Table 1, the original method even failed to converge on some
large meshes. On the other hand, since the coarsest mesh in our
multigrid hierarchy is always small enough, so that the initial-
ized foliation can quickly be optimized to be harmonic with the
algorithm of [7, 4]. As the foliation on a coarser level provides
a much better initialization for generating the foliation on the
next finer level, providing foliation values for nearly all edges
of the mesh for the finer level, our solver can converge much
faster.

Using our method, the time used for building the multigrid
hierarchy is very little compared to the time for solving the fo-
liation. Meanwhile, our multigrid hierarchy can be reused with
different input loops once it is constructed. Since the place-
ment of the singularities for the foliation is fully determined
by the optimization, one has to adjust the input loops as well
as its associated weights and re-run the algorithm to see if the
result meets one’s requirements. Thus, using our method, one
can quickly test the inputs on the coarser levels to see if the
initialized foliation is desirable, which can save much time on
adjustment. As for using the original algorithm of [7, 4], it
would be very difficult for such interactive adjustments as it is
very time-consuming.
Performance analysis. In Fig. 12, we measure the time spent
for three major aspects of our algorithm, namely building the
multigrid hierarchy, performing the Whitehead move optimiza-
tion algorithm of [7, 4], and interpolating foliations between
neighboring levels. From the statistics, the building phase takes
up around 1%-7% of the total running time, since the collaps-
ing and flipping are local operations and fast to compute. The
interpolation of all levels takes up relatively the same amount of
time as the building phase, since the number of edges to process
is identical. The optimization by Whitehead moves of all levels
consumes over 90% of the total running time.

As discussed in Section 4, the number of edges to collapse
between consecutive hierarchical levels has much influence on
the efficiency. Here, we made a test by setting the simplification
ratio for edges being 25%, 50%, and 75% to check their con-
vergence efficiencies for some meshes. In Table 1, the statistics
are listed, from which we know that 50% is generally the best.



Preprint Submitted for review /Computers & Graphics (2021) 9

Table 1. Time cost1 of our multigrid solver compared to the original algorithm [7, 4].

mesh #v #e original ours-25%2 ours-50% ours-75%

build3 solve4 build solve build solve

block 26k 78k 103.55 0.19 17.30 0.21 12.05 (9x) 0.23 14.28
bob 5k 15k 15.47 0.03 4.12 0.03 4.00 (4x) 0.03 13.01
botijo 93k 280k —5 1.08 35.49 1.11 34.79 1.27 36.73
bumpy-torus 12k 36k 73.56 0.08 7.67 0.09 4.38 (17x) 0.09 29.23
cad 74k 222k 3372.10 0.73 29.43 0.80 28.87 (117x) 0.84 32.11
dtorus 66k 197k — 0.62 19.65 0.63 15.82 0.81 24.93
eight 100k 301k — 1.25 26.06 1.63 26.86 1.35 32.54
fertility 30k 90k 940.53 0.23 25.28 0.24 25.24 0.28 22.13 (43x)
genus 104k 312k — 1.16 51.82 1.22 43.99 1.43 60.13
holes3 96k 288k 2985.67 1.08 44.38 (67x) 1.15 45.05 1.26 48.58
joint 36k 108k 2024.21 0.27 23.34 0.29 15.38 (132x) 0.33 18.11
kitten 50k 150k 1610.22 0.41 23.65 0.56 13.38 (120x) 0.47 16.24
master-cylinder 542k 1625k — 12.84 192.00 13.78 185.25 13.90 256.78
pegasus 20k 60k 395.29 0.13 19.62 (x20) 0.14 20.89 0.16 21.10
rocker-arm 1k 3k 1.06 0.00 1.00 0.00 1.02 0.00 0.83 (1x)
sculpt 58k 175k 570.58 0.48 25.27 (23x) 0.55 25.29 0.61 26.82
torus 3k 9k 7.83 0.02 3.43 0.03 2.61 0.03 1.58 (5x)
trefoil-knot 147k 442k — 2.31 34.47 2.36 23.36 2.73 28.71
trimstar 246k 737k — 4.30 67.20 4.58 53.43 4.99 61.62
tube 42k 126k 3216.15 0.33 43.86 0.35 15.90 0.41 13.15 (245x)
1 Time measured in seconds. 2 (edges in coarser level) / (edges in finer level). 3 Time to build the multigrid hierarchy.
4 Time to compute the foliation. 5 Not converged within a time limit (1h in all experiments).

Fig. 11. The harmonic measured foliations generated for meshes listed in Table 1 (showing the results of ours-50%).

build
0.20s
1.12%

interpolate
0.05s
0.31%optimize

17.25s
98.57%

ours-25%

build
0.21s
1.68%

interpolate
0.09s
0.77%optimize

11.96s
97.56%

ours-50%

build
0.23s
1.61%

interpolate
0.20s
1.37%optimize

14.08s
97.02%

ours-75%
ours-25% ours-50% ours-75%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

tim
e(

s)

3-levels

5-levels

12-levels

solve time (optimize + interpolate)

build
interpolate
optimize

build
1.08s
2.39%

interpolate
0.31s
0.68%optimize

43.76s
96.93%

ours-25%

build
1.15s
2.49%

interpolate
0.46s
0.99%optimize

44.59s
96.52%

ours-50%

build
1.26s
2.53%

interpolate
0.96s
1.92%optimize

47.63s
95.55%

ours-75%
ours-25% ours-50% ours-75%

0

10

20

30

40

50

tim
e(

s)

4-levels 7-levels
16-levels

solve time (optimize + interpolate)

build
12.84s
6.27%

interpolate
4.13s
2.02%optimize

187.87s
91.71%

ours-25%

build
13.78s
6.92%

interpolate
5.51s
2.77%optimize

179.75s
90.31%

ours-50%

build
13.90s
5.14%

interpolate
10.20s
3.77%optimize

246.58s
91.10%

ours-75%
ours-25% ours-50% ours-75%

0

50

100

150

200

250

tim
e(

s)

5-levels 10-levels

22-levels
solve time (optimize + interpolate)

(a) block (26k) (b) holes3 (96k) (c) master-cylinder (542k)

Fig. 12. Time cost for different aspects of our algorithm for three examples chosen from Table 1, including the time for building the multigrid hierarchy
(build), optimizing the foliation using the Whitehead move algorithm (optimize), and interpolating foliation between multigrid levels (interpolate). Here,
the sections of a bar represent the time cost for handling the levels of the hierarchy for the mesh, and they are arranged from bottom to top, corresponding
to handling the levels from the coarsest to the finest.



10 Preprint Submitted for review /Computers & Graphics (2021)

Fig. 13. Our algorithm achieves similar converged results on the same
shape in three very different resolutions.

Fig. 14. Our algorithm converges faster than the original method [7, 4] no
matter what types and numbers of input loops are given.

As a result, we choose 50% in all the other experiments.
With regard to the influence of our interpolation on the con-

vergence efficiency, we notice from the time-energy diagrams
shown in Figs. 1, 7 and 14 that there are some spikes in the
curves of our method. These spikes are caused by our interpo-
lation because it only preserves the closedness of the foliation,
but breaks the coclosedness. Fortunately, these spikes can be
quickly smoothed in a just few iterations, and do not incur too
much overhead on our algorithm. This is because the interpola-
tion only alters the foliation locally. Therefore, the interpolated
foliation is not very far from the harmonic solution, as seen in
Fig. 4 where the initial foliation in each level (left) is similar to
the harmonic one (right).
Testing on the same shape in different resolutions. As seen
in Table 1, the running time of the algorithm does not solely
depend on the resolution of the mesh. In general, the geome-
try of the surface has much influence on the time cost, e.g., the
algorithm tends to converge more slowly on a complex, curvy
surface than on a simple, smooth surface. For example, the ”pe-
gasus” mesh is smaller than the ”block” mesh, but the algorithm
runs more slowly on the first mesh for both the original method
and our multigrid method.

To see the performance of our method independent of the
shape geometry, we tested the algorithm on several meshes in
different resolutions representing the same surface in Fig. 13.
The results show that our multigrid solver always converges to
similar solutions, independent of the mesh resolutions.

Fig. 15. With our multigrid solver, we can compute global conformal pa-
rameterizations on very large meshes, which cannot be achieved by [4].

Fig. 16. The foliations with poles collected from Table 2. Left: pegasus;
Right: master-cylinder. Poles are shown in yellow while zeros are shown in
blue.

Testing different input loops. As discussed in [7], changing
the homotopy types of the input loops will change the White-
head class of the foliation, as well as the convergence time of
the algorithm. Nevertheless, our multigrid method can acceler-
ate the convergence of the optimization in face of different input
loops, as illustrated in Fig. 14.

Application: scalable conformal parameterization on high-
genus meshes. Zhao et al. [4] propose to compute a confor-
mal parameterization on high-genus meshes using the harmonic
measured foliation. Due to the inefficiency of the original har-
monic measured foliation algorithm, Zhao et al. [4] only report
results on meshes less than 30,000 vertices. But armed with
our multigrid solver, we can compute global conformal param-
eterization using [4] on extremely large meshes, e.g. over one
million edges, as shown in Fig. 15.

Limitations. As mentioned in Section 4, our algorithm may
create poles due to 1) non-Delaunay edges that are not flippable
when constructing the mesh hierarchy (NLD), and 2) a rare cir-
cumstance in case 4 during the interpolation for edge flipping
(BF). Fortunately, the NLD cases are very rare and only hap-
pens on complex shapes, as reported in Table 2. Even if the
NLD edges appear, the foliation algorithm may also be free
of poles in practice, e.g., the ”pegasus” mesh using ours-25%
method. The BF cases are also scarce compared to the mesh
size, and many of them can be fixed by running a few more
iterations of the Whitehead move algorithm as stated in Sec-
tion 4.2. In our current implementation, we set a time limit of
1s for the fixing procedure to prevent it from getting stuck, and
it can potentially reduce more BF cases if it is allowed to run
longer on some complex shapes. Also note that for the ”genus”
mesh using ours-25% method, the BF case is not fixed, but no
poles are generated because the pole and zero cancel each other
out in the later iterations. Even so, our algorithm may produce
poles as shown in Fig. 16. This requires further studies for solv-
ing the problem.



Preprint Submitted for review /Computers & Graphics (2021) 11

6. Conclusion and future work

Table 2. Corner cases encountered for the experiments in Table 1.

mesh ours-25% ours-50% ours-75%

NLD1 BF2 P3 NLD BF P NLD BF P

block 0 0/0 0 0 0/0 0 0 0/0 0
bob 0 0/0 0 0 0/0 0 0 0/0 0
botijo 0 0/0 0 0 2/0 0 0 1/0 0
bumpy-torus 0 0/0 0 0 0/0 0 0 0/0 0
cad 0 0/0 0 0 0/0 0 0 0/0 0
dtorus 0 0/0 0 0 0/0 0 0 0/0 0
eight 0 0/0 0 0 1/0 0 0 0/0 0
fertility 0 0/0 0 0 0/0 0 0 1/0 0
genus 0 1/1 0 0 0/0 0 0 0/0 0
holes3 0 0/0 0 0 0/0 0 0 1/0 0
joint 0 0/0 0 0 0/0 0 0 0/0 0
kitten 0 0/0 0 0 1/0 0 0 0/0 0
master-cylinder 0 0/0 0 0 5/2 6 0 1/0 0
pegasus 3 0/0 0 3 2/2 3 7 2/2 2
rocker-arm 0 0/0 0 0 0/0 0 0 0/0 0
sculpt 0 0/0 0 0 1/0 0 0 0/0 0
torus 0 0/0 0 0 0/0 0 0 0/0 0
trefoil-knot 0 0/0 0 0 0/0 0 0 1/0 0
trimstar 0 1/0 0 0 0/0 0 0 0/0 0
tube 0 1/0 0 0 1/0 0 0 0/0 0
1 Non-locally Delaunay edges.
2 Bad flips causing poles before/after fixing.
3 Poles in the final result.
4 Data in this table represents the number of occurrences of corner cases.
In general, the probabilities of NLD, BF, and P are always very small in
handling a mesh. For example, for the pegasus mesh using ours-50%, the
probabilities of NLD, BF, and P are approximately 0.05‰, 0.03‰, and
0.05‰respectively against the edges of the mesh.

In this paper, we present a multigrid method for generating
discrete harmonic measured foliations [7, 4], which involves
non-linear optimization with hard constraints and is known hard
to solve. The core of our multigrid solver consists of a tai-
lored multi-resolution mesh hierarchy and a set of constraints-
preserving interpolation measures to help the algorithm con-
verge to the real solution. Experimental results show that our
method achieves an acceleration rate up to 200+ times com-
pared to the original algorithm, and can generate a solution for
a mesh with over one million edges in just a few minutes. With
our multigrid solver, the harmonic measured foliation algorithm
can scale well to very large meshes.

There are many directions to explore in the future. First, it
is interesting to see whether more sophisticated schemes, like
the Full Approximation Scheme (FAS) [19], can help obtain
much more acceleration. Second, since the discrete measured
foliation is similar to a differential 1-form, it is interesting to
extend our multigrid solver to solve the other problems formu-
lated using 1-forms [8], which are more widely adopted in the
literature.

Acknowledgements

The meshes used in our experiments are collected from the
dataset provided by [36]. The work is partially supported by
the National Natural Science Foundation of China under Grant
62072446.

References

[1] Campen, M, Silva, CT, Zorin, D. Bijective maps from simplicial foli-
ations. ACM Transactions on Graphics 2016;35(4):1–15. doi:10.1145/
2897824.2925890.

[2] Cohen, D, Ben-Chen, M. Generalized volumetric foliation from inverted
viscous flow. Computers & Graphics 2019;82:152–162. doi:10.1016/
j.cag.2019.05.015.

[3] Vekhter, J, Zhuo, J, Fandino, LFG, Huang, Q, Vouga, E. Weaving
geodesic foliations. ACM Transactions on Graphics 2019;38(4):1–22.

[4] Zhao, H, Wang, S, Wang, W. Global conformal parameterization via
an implementation of holomorphic quadratic differentials. IEEE Transac-
tions on Visualization and Computer Graphics, early access 2020;doi:10.
1109/TVCG.2020.3016574.

[5] Lei, N, Zheng, X, Si, H, Luo, Z, Gu, X. Generalized regular quadri-
lateral mesh generation based on surface foliation. Procedia Engineering
2017;203:336–348. doi:10.1016/j.proeng.2017.09.818.

[6] Zheng, X, Wen, C, Lei, N, Ma, M, Gu, X. Surface registration
via foliation. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 2017, p. 938–947. doi:10.1109/ICCV.2017.
107.

[7] Palmer, DR. Toward computing extremal quasiconformal maps via dis-
crete harmonic measured foliations. Bachelor’s thesis; Harvard College;
2016.

[8] Crane, K. Discrete differential geometry: An applied introduction. No-
tices of the AMS, Communication 2018;:1153–1159.

[9] Ray, N, Levy, B. Hierarchical least squares conformal map. In: Pro-
ceedings of the 11th Pacific Conference on Computer Graphics and Ap-
plications. Canmore, Alta., Canada: IEEE Comput. Soc. ISBN 978-0-
7695-2028-5; 2003, p. 263–270. doi:10.1109/PCCGA.2003.1238268.

[10] Aksoylu, B, Khodakovsky, A, Schröder, P. Multilevel solvers for
unstructured surface meshes. SIAM Journal on Scientific Computing
2005;26(4):1146–1165. doi:10.1137/S1064827503430138.

[11] Liu, HTD, Zhang, JE, Ben-Chen, M, Jacobson, A. Surface multigrid via
intrinsic prolongation. ACM Transactions on Graphics 2021;40(4):1–13.
doi:10.1145/3450626.3459768.

[12] Dyer, R, Zhang, H, Möller, T. Delaunay mesh construction. In: Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing.
SGP ’07; Aire-la-Ville, Switzerland, Switzerland: Eurographics Associa-
tion. ISBN 978-3-905673-46-3; 2007, p. 273–282.

[13] Fathi, A, Laudenbach, F, Poénaru, V. Thurston’s Work on Surfaces
(MN-48). Princeton University Press; 2012. ISBN 978-0-691-14735-2.

[14] Strebel, K. Quadratic Differentials. Ergebnisse Der Mathematik Und
Ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemat-
ics; Berlin Heidelberg: Springer-Verlag; 1984. ISBN 978-3-540-13035-2.
doi:10.1007/978-3-662-02414-0.

[15] Lei, N, Zheng, X, Jiang, J, Lin, YY, Gu, DX. Quadrilateral and
hexahedral mesh generation based on surface foliation theory. Com-
puter Methods in Applied Mechanics and Engineering 2017;316:758–
781. doi:10.1016/j.cma.2016.09.044.

[16] Lei, N, Zheng, X, Jiang, J, Lin, YY, Gu, DX. Quadrilateral and
hexahedral mesh generation based on surface foliation theory II. Com-
puter Methods in Applied Mechanics and Engineering 2017;321:406–
426. doi:10.1016/j.cma.2017.04.012.

[17] Shi, R, Zeng, W, Su, Z, Damasio, H, Lu, Z, Wang, Y, et al. Hyperbolic
harmonic mapping for constrained brain surface registration. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2013, p. 2531–2538. doi:10.1109/CVPR.2013.327.

[18] Gu, X, Yau, ST. Global conformal surface parameterization. In: Pro-
ceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Ge-
ometry Processing. SGP ’03; Goslar, DEU: Eurographics Association.
ISBN 978-1-58113-687-6; 2003, p. 127–137.

http://dx.doi.org/10.1145/2897824.2925890
http://dx.doi.org/10.1145/2897824.2925890
http://dx.doi.org/10.1016/j.cag.2019.05.015
http://dx.doi.org/10.1016/j.cag.2019.05.015
http://dx.doi.org/10.1109/TVCG.2020.3016574
http://dx.doi.org/10.1109/TVCG.2020.3016574
http://dx.doi.org/10.1016/j.proeng.2017.09.818
http://dx.doi.org/10.1109/ICCV.2017.107
http://dx.doi.org/10.1109/ICCV.2017.107
http://dx.doi.org/10.1109/PCCGA.2003.1238268
http://dx.doi.org/10.1137/S1064827503430138
http://dx.doi.org/10.1145/3450626.3459768
http://dx.doi.org/10.1007/978-3-662-02414-0
http://dx.doi.org/10.1016/j.cma.2016.09.044
http://dx.doi.org/10.1016/j.cma.2017.04.012
http://dx.doi.org/10.1109/CVPR.2013.327


12 Preprint Submitted for review /Computers & Graphics (2021)

[19] Briggs, WL, Henson, VE, McCormick, SF. A Multigrid Tutorial.
Other Titles in Applied Mathematics; Society for Industrial and Ap-
plied Mathematics; 2000. ISBN 978-0-89871-462-3. doi:10.1137/1.
9780898719505.

[20] Kazhdan, M, Hoppe, H. Streaming multigrid for gradient-domain oper-
ations on large images. ACM Transactions on Graphics 2008;27(3):1–10.

[21] McAdams, A, Sifakis, E, Teran, J. A parallel multigrid poisson solver
for fluids simulation on large grids. In: Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 2010, p.
65–73.

[22] Aanjaneya, M, Han, C, Goldade, R, Batty, C. An efficient geometric
multigrid solver for viscous liquids. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques 2019;2(2):1–21.

[23] Kazhdan, M, Bolitho, M, Hoppe, H. Poisson surface reconstruction. In:
Proceedings of the Fourth Eurographics Symposium on Geometry Pro-
cessing. SGP ’06; Cagliari, Sardinia, Italy: Eurographics Association.
ISBN 978-3-905673-36-4; 2006, p. 61–70.

[24] Kazhdan, M, Hoppe, H. Screened poisson surface reconstruction. ACM
Transactions on Graphics 2013;32(3):1–13.

[25] Kazhdan, M, Hoppe, H. An adaptive multigrid solver for applications
in computer graphics. Computer Graphics Forum 2019;38(1):138–150.
doi:10.1111/cgf.13449.

[26] Wang, Z, Wu, L, Fratarcangeli, M, Tang, M, Wang, H. Paral-
lel multigrid for nonlinear cloth simulation. Computer Graphics Forum
2018;37(7):131–141. doi:10.1111/cgf.13554.

[27] Otaduy, MA, Germann, D, Redon, S, Gross, M. Adaptive de-
formations with fast tight bounds. In: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 2007, p.
181–190.

[28] Botsch, M, Kobbelt, L. A remeshing approach to multiresolution mod-
eling. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing. ACM; 2004, p. 185–192.

[29] Ni, X, Garland, M, Hart, JC. Fair Morse functions for extracting the
topological structure of a surface mesh. ACM Transactions on Graphics
2004;23(3):613–622. doi:10.1145/1015706.1015769.

[30] Shi, L, Yu, Y, Bell, N, Feng, WW. A fast multigrid algorithm for mesh
deformation. ACM Transactions on Graphics 2006;25(3):1108–1117.

[31] Tamstorf, R, Jones, T, McCormick, SF. Smoothed aggregation multigrid
for cloth simulation. ACM Transactions on Graphics 2015;34(6):1–13.

[32] Meyer, M, Desbrun, M, Schröder, P, Barr, AH. Discrete differential-
geometry operators for triangulated 2-manifolds. In: Visualization and
Mathematics III. Springer; 2003, p. 35–57.

[33] Erickson, J, Whittlesey, K. Greedy optimal homotopy and homology
generators. In: Proceedings of the Sixteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SODA ’05; USA: Society for Industrial and
Applied Mathematics. ISBN 978-0-89871-585-9; 2005, p. 1038–1046.

[34] Dey, TK, Fan, F, Wang, Y. An efficient computation of handle and tunnel
loops via Reeb graphs. ACM Transactions on Graphics 2013;32(4):1–10.
doi:10.1145/2461912.2462017.

[35] Garland, M, Heckbert, PS. Surface simplification using quadric error
metrics. In: Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques. ACM Press/Addison-Wesley Pub-
lishing Co.; 1997, p. 209–216.

[36] Myles, A, Pietroni, N, Zorin, D. Robust field-aligned global
parametrization. ACM Transactions on Graphics 2014;33(4):1–14.
doi:10.1145/2601097.2601154.

http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1111/cgf.13449
http://dx.doi.org/10.1111/cgf.13554
http://dx.doi.org/10.1145/1015706.1015769
http://dx.doi.org/10.1145/2461912.2462017
http://dx.doi.org/10.1145/2601097.2601154

	Introduction
	Related work
	Discrete foliations
	Multigrid methods

	Discrete harmonic measured foliations
	Notations
	Definitions
	Algorithm

	The cascadic multigrid solver
	Constructing Delaunay multigrid hierarchy
	Edge collapsing
	Edge flipping

	Whitehead-class-preserving interpolation
	Whitehead perturbation
	Interpolation for edge flipping
	Interpolation for edge collapsing


	Experiments and analysis
	Conclusion and future work

